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Abstract: A Polynomial Approximation for Switchiing Regressions

with application to Market Structure-Performance Studies

This paper describes an estimation method for the switching

regression model when the choice of regression regime is determined
by a critical value of an exogenous variable. The advantage of the
method over standard regression tecnniques is that standard errors
can be calculated for the estimated critical value. The technique
is applied to a model of price-cost margins and industry concentration

ratios.



A Polynomial Approximation for Switching Regressions
with application to Market Structure-Performance Studies
Donald T. Sant

1. Introduction

In many cmpirical studices in which a regression approach
is appropriate, 1t is not realistic to assume that all obser-
vations are generated by the same regression equation. Econo-
mic examples include questions of '"'structural change'" and models
of disequilibrium such as Fair and Jaffe (1972). More general-
ly, all switching regression models are of this form. The esti-
mation difficulties for these types of models, stem from the
fact that standard regression theory can only be used if prior
knowledge is available which can classify observations to their
respective generating equation. Without this prior information,
it is necessary to make additional assumptions in order to obtain
estimates with desirable properties.

Most assumptions describe some mechanism for determining
which regression regime will generate an observation. Gold-
feld and Quandt (1972, 1973), specify a probability model for
determining the regression regime. In their formulation, na-
ture selects the regime which generates the ith observation
according to the probability P; where‘pi may be a function of
some exogeneous variables. In Quandt (1958), the choice of
regression regime is determined by a critical value of an
exogeneous variable. If the exogeneous variable is smaller
than some critical value,one regime generates the observation
and if the exogenous variable is larger than this critical

value a second regime generates the observation. In either



formulation additional parameters have been specified which
can be used to classify observations to their respective gen-
erating equation. The substantive difference between these
two approaches is the amount of stochastic variation allowed
into the model. The first approach includes the second approach
if we can specify and estimate a probability model which allows
for the degenerate case where the probabilities are identically
zero or one. But if our probability model of regression regimes
does not allow for this restriction, the two approaches are not
nested except possibly in the limit as some parameters converge
to plus or minus infinity. Since this is the case for the
logit and probit probability models, it is still necessary to
consider both approaches separately. This paper will start
with the nonstochastic formulation of selecting the regression
regime and will describe an approach for estimating the criti-
cal value of the exogeneous variable.

The particular model considered in this paper is one in
which the mean of a random variable can be represented by a
step function of some exogenous variable but where the discon-
tinuity point is unknown. The suggested approach is to ap-
proximate this model by a model in which the mean is represented
by a continuous grafted polynomial. The advantage of this
approach is that estimates of precision can be made about where
the discontinuity occurs. Further, specification checks can be
made to see if the step function is an appropriate representa-

tion of the data.



In section 2, the statistical model is presented along
with some estimation theory. Section 3 presents some results
on artificial data and section 4 presents an economic illustra-
tion using price-cost margins and concentration ratios.

2. The Statistical Model

The regression model of interest 1s

= ! + - <
(la) Yy h z‘t X, < .

= + +
(1b) y = w * v+ e acx X

where My is an estimable function of exogenous variables, which

may or may not include x
2

£ €t is a random error term with mean

0 and variance ¢“, and y 1s the step increment which occurs at
the discontinuity point o. The problem is to obtain estimates
of all of the parameters, including a.

There is no conceptual difficulty in using least-squares
or the likelihood approach (Quandt, 1958) to estimate the para-
meters of equation (1), however, an algorithm other than the
exhaustive search procedure of Quandt (1958) is not immediately
obvious. The major difficulty is that this search procedure
must be expanded beyond finding the minimum error sum of squares
if estimates of standard errors are desired. For example, to
obtain a 95% confidence interval for a, one must find the values
" (Scheffe 1959), which solve

(2) (T-k) Sw ~ 552_ - F

S

of a

.05;1,T-k
)

where
T= number of observations
k= number of parameters
F 05:1.T-1- UPPer 5% point of the F-distribution with 1

and T-k degrees of freedom



S.= residual sum of squares which has been minimized with

Q

respect to all parameters (including o) and

S,= residual sum of squares which has been minimized with
respect to all parameters except a= o®

Since this will become a very complex problem when more
complicated confidence ellipsoids are desired, an alternative
approach seems desirable. The alternative suggested here is
to choose a functional form which is easier to estimate and
which will approximate equation (1) reasonably well. A func-
tional form which satisfies this criterion is a segmented poly-
nomial, (Gallant and Fuller, 1973). In a small neighborhood
of the point x = o, we specify a polynomial in x, which will
join the two segments of equation (1). To reduce estimation
problems, the polynomials can be constrained to be continuous
and differentiable in x. Another consideration of this ap-
proach is that it seems to be more consistent with the as-
sumptions of economic theory where continuous functions are
most often used to describe behavior. But it is still true
that if equation (1) is the correct description of reality,
we will be making a specification error if we estimate a
different set of equations.

To describe the approximation, consider the model

(3a) ve= ue *+ ey Xy < o
(3b) )’t= Ut + g(xt) + Et al = xt = az
(3c) y = ug v v *+ gy @y I Xg-
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We have added the joining equation g(xt), and if we want the
function Y¢ to be continuous in X g(xt) must satisfy

(4) glay)

(5) glay)

and for the function Ye to be differentiable in X, g(xt)

0

0

0

”

must satisfty

0

0

(6) g'(al)
(7) g'(ap) = 0.
If the function g is to be a polynomial the smallest degree

polynomial which will satisfy these constraints is one of

degree three.

2 3
(8) g(x)= 8, * By x + B, X + 8, x

Looking at equation (3), one can easily see that the

specification error is only made in the range a, < x < «a

1 - 27

t
[f the parameters of equation (8) can be chosen which satisfy
the constraints (4)-(7) and make the difference a,-a; small,
equation (3) should be a very good approximation to equation

(1). Imposing the constraints on equation (8) one obtains

83 2
(9) Bo™ —F %3 (a7 - 3az)

(10) B, 363 ay a,

3 .
(11) 8,= 7 85 (a; * a3)

_B, 3
(12) v==—7 (a, - a;).




One can now reparameterize equation (3) into a form that
is convenient to use standard optimization routines to find
the least squares estimates. Letting 6 .= ¢ and defining the
function I(z) to be
(13a) I(z)= 0 7<0
(13b) I(z)=1 z2>0
equation (3) can be written

(14) Y= ouot g(xt)

t
2

3
+> B((a, ~xt) -(ay - Xt))[al - xt) I(oaI - Xt)

3

+8 (a,; - Xt) I(a1 - xt)
3 o 2
vz Bllay - x) - (e - x ) (ay = x )7 Tlxg - @)

3
+B(a2 - xt) I(xt - az) + Et

which is a once continuously differentiable function of 8,
@y, a,, and xt. It is only once continuously differentiable
since
(15) zkl(z)
is only continuously differentiable for k > 2. The function
(14) is not twice differentiable at the points x=a, and X=a,.
It follows from Malinvaud (1970, p. 331) that the least
squares estimates of equation (14) are consistent and, under
suitable conditions on the parameter space, asymptotically
normally distributed. To use standard theorems to find the
limiting distribution, we need derivatives of the first three

orders which restricts the relevant domain of the parameter

space of o, and o, to any closed and bounded region which does
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not include anyv of the values of the exogenous variables x
Given this parameter space, it then follows that the para-
meter values of a;, a,, 8, and 8 (the parameters of the func-

tion ut) which minimize

T 2
(l6) = (v - f)
t=1 t t

where f is the right hand side (excluding et) of equation
t
(14), are consistent and asymptotically normally distributed

with covariance matrix given by

T
vf vf

2
17 )
(17) o Z_ Vi Vi,

where Vft is the gradient of the function ft'
3. Some Nonrandom Experiments

In order to describe the adequacy of the approximation and
to obtain methods for estimation, some nonrandom experiments
were conducted. Three forms of experiments were conducted.
Experiment 1 could be described exactly by equation (1) with
My and €4 identically equal to zero and experiment 2 set ut= 0
but included a nonzero error term. Experiments 3 and 4 used
data that could be best described by a Bernoulli random vari-

able. Experiment 5 used data described by a linear equation

without an error term.
3.1 Experiments 1 and 2.

In experiment la and 1b, equation (1) was a perfect represen-
tation of the data. In both cases My and £, were identically
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equal to zero. In experiment la, y= .3, a= .51, and in
experiment 1b, y=.-3, «=.51. In both cases there were 25
observations where Xt < .5 and 25 observations where X; > .52,
and all values of Xt where spaced .02 apart. As 1s evident
from table I, the function (14) provides a very good repre-
sentation of the data. The error sum of squares 1is essenti-
ally zero, and to 8 significant digits, y is estimated,

using equation (12), to be .3. The parameter estimates,
judged by their standard errors, are very precise and one
learns everything one could learn about a from the data.
There are no observations between .50 and .52 and (to 5 sig-
nificant digits) since &1= .50, ;2= .52, one could conclude
from this evidence that ae(.50,.52). Experiment 1lb conveys
no additional evidence about goodness of fit, except it nu-
mericallyexhibits the symmetry of the function. If a, <ay,
positive values of B imply a negative value of y, and neg-
ative values of B imply a positive value of y (evident from
equation (12)). However, the algorithm used for minimization
(Davidon -Fletcher -Powell, see Goldfeld and Quandt, 1972) did
not impose the requirement that a;<a,. And depending upon

the initial values, the minimizing values were sometimes such

that a,>a

17%0 s but in these cases, the sign of B also changed

so as to give precisely accurate results.
In experiment 2, the values of y were either -.3 or .02

if X, = .50 and were either .3 or -.02 if x,>.52. The values



/

of y were all .02 or -.02 when xte(.38, .62) and were either
.3 or -.3 when Xté{.SS,.OZ). Judged by the point estimates,
the procedure has determined the value of a« to a reasonable
tolerance, but our standard errors of the estimates are fairly
large. But considering the data, this should be expected.

The value of the dependent variable is overlapping, and one
should not expect the classification of observations to the
appropriate regression regime to be very precise. Judged

by these experiments, the procedure is a good method for

estimating equations of type (1).
3.2 Experiments 3 and 4.

In experiments 3 and 4, there where 50 observations,
where Xt= .02t, and yt= 0 if t is odd and yt= .3 1f t is
even. This data was chosen as representative of the alternative
hypothesis that y= 0 and would be best represented by the
equation
(18) y,=ow ¥ ©.
where here u= .15.

Experiment 3 assumed that ut= 0 and tried to fit the ap-
proximate step function to this data. The representation of

the observed data was as good as equation (18) since all obser-

5. In effect it Jjust used

vations are in the range where xti&
y to estimate p. The estimated vy is .15 which would be the
estimate of u using these observations. One indication of
the inappropriateness of the specification however is that

both &1 and &2 were less than the actual values of xt. Another

-9-



_0’[_

Table I

Parameter Estimates For The Controlled Experiments

Experiment £ ay @, constant
la -74945.072 500 520
(4.523) (.285 X 10°%  (.285 x 1079
1b 74938.415 .500 .520
(4.688) (.295 X 10°%)  (.295 x 10°9)
2 -22583.469 .507 . 536 - . 146
(1.014 X 10%) (.200) (.200) (.033)
3 -9.959 -1.224 -.091
4 210.001 414 .526 146
(1418.007) (2.859) (2.848) (.035)
5 -.018 -2.567 3.589 -.776

(.0026) (.226) (.228) (.075)

Error Sum of
Squarces

4.53 x 10716
6.11 X 10710

1.249

1.125

1.124

5.55 X 10



indication is that equation (17) becomes a singular matrix
with these estimates and this data set.

Experiment 4 uses the same data set but includes a
general mean p in the estimation formulation. This also
eliminates the singular matrix of equation (17), since at
the minimizing values we get some variability in the func-
tion ft in the range of the observed Xt. Here also we
would be inclined to make correct inferences. The standard
errors of each of the estimates are large relative to their
value, which would lead one to suspect something wrong with
the approximating function (or in the specification of the

model) .
3.3 Experiment 5.

Experiment 5 used data generated from the linear equation
(19) Y= .SXt t=1,50

where X, = .02t. Even though we were able to fit equation (19)
fairly closely, there is evidence which would lead to the
conclusion that our model was not specified correctly. The
standard errors are not large relative to the coefficient
estimates, but the difference, ;2 - ;l’ is much larger than

is consistent with the model of equation (1) and the observed
data. It is the middle part of our function (3) which is

being used to fit the data and as a result, &1 and &2 yield

no evidence (since there isn't any) about the range of «a.
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The interval (;’ v,) encompasses all of the observed data, so
we have learnced nothing morce about o {from the cstimation pro-
cess and from the data.

The evidence from these nonrandom experiments suggests
that equation (3) is a useful approach to the estimation of
equation (1). The model yields precise estimates when spe-
cified correctly, and it provides signals for specification
error when appropriate. The next section uses this model

on data about price-cost margins and market concentration.
4. An Economic example

A much studied question is the impact of industry struc-
ture on performance. The general hypothesis is (Bain 1968)
that high seller concentration within industries should be
associated with substantial excesses of selling price over
long-run average costs and low seller concentration should
be associated with no excess at all. After a survey of the
empirical work however Weiss (1974) concludes that the ques-
tion still remains whether there really is a critical level
of concentration which can be used to distinguish between
high and low levels of seller concentration.

The hypothesis of substantial profits has been tested
using specifications of the form of equation (1), but where
a or the critical concentration level was given by assump-

tion instead of estimated. Since o is not determined by
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theory, assuming o is known when it should be estimated,
will give an all too optimistic sense of the precision of
our estimates. This section will use the technique of
section Il to analyze the question of a critical concen-
tration level and provide estimates of precision for that
level.

The data are those used by Kwoka (1977) and include the
four-digit SIC industry aggregates taken from the 1972 Census
of Manufactures and another source described later. The
profit measure is the price-cost margin defined as

Y= Value Added - Payroll
Value of Shipments

Independent variables other than concentration are:
(1) A measure of the capital-output ratio given by

g = gross book value of fixed assets divided by value
of shipments.

(2) A measure to account for the local and regional
nature of some markets given by

g = Collins and Prestons (1968, 1969) geographical
dispersion index defined as the sum of the absolute values
of the differences between the percent of an industry's
value added and all manufacturing value added for all four
Census regions of the country.

(3) A measure of industry growth to account for short-

run phenomena defined as

24" Value of shipments in 1972 - Value of shipments in 1967.
Value of shipments in 1972

(4) A dummy variable 24 equalling one for consumer goods

industries.

-13-



(5) A constant.

The usual measure of industry concentration is the four
firm concentration ratio (xt) which is also used here in the
first formulation. So the equation to be estimated is
(20) yt= q(xt) t 8, 6121t tb,E,, t 6323t + 6gzut + Et
where q(xr) represents the segmented polynomial approximation
to the step function. Estimates of equation (20) are given
in table ITI.

Table 11

Parameter Estimates Using Four Firm Concentration Ratio

A ~ A A ~

a, a, B 84 5 5, 83 5,

.460 .470 -88106.9025 .225 .081 -.035 .044 .039
(.956) (.979) (5.55 X 10°) (.021) (.017) (.021) (.012) (.861)

Error Sum of Squares 1.994
These results are consistent with those of previous in-

~

vestigators. The values of &1, a, and B imply that for indus-
ries where the concentration ratio is above 47 percent, the
price-cost margin is 4.4 percentage points higher than in
those industries where the concentration ratio is below 46
percent. However, when the "break point' is also estimated,
our precision of these results is not very good. In fact,

we can not make any definitive statement about the critical
level of concentration. The estimated variance of y is .876
which permits us to be precise about the price-cost differen-
tial, but the precise point where monopoly profits become
prevalent is not obvious. From the experimental results,

this probably results from the ''fuzzy'" region as in experi-

ment 2 in the middle range of concentration. Scanning the
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error sum of sequares for different values of the parameters
confirmed this suspicion. Holding the difference (;l~ &3)
constant at .01 and allowing &7 to vary between .5 and .08
vielded a change in the crror sum of squares of only 2
percent.

A possible reason for these results is that no allowance
is made for the distribution of output between the four lead-
ing firms. The use of the four firm concentration ratio
constrains the impact of all four firms to be the same. This
constraint precludes tests of hypotheses regarding dominant
firm models and collusive dealings models. A priori reason-
ing would suggest that the performance of an industry with
a four firm concentration ratio of .60 but where one firm
had 50 percent of the market would be different from the
performance of an industry where each of the four firms
provided 15 percent of the market. This reasoning is not
contained in the formulation using the four firm concentra-
tion measure.

The next formulation will disaggregate the measure of
concentration by firm and enter the share of the market of
the four largest firms individually. The individual firm
share data is from Economic Information Systems, Inc. A
description of this data and further discussion of all
data used in this study can be found in Kwoka (1977). The

equation to be estimated using the individual shares 1is

‘15_



(21) y,=q. (s ) + qz(s ) + q (s_ ) +q (s ) +38 + 68 2

t 11t 2t 3 3t 4 4t . 11t
Sof,p ¥ Sarg t f it toel
where s is the share of the eutput in the tth industry pro-

1t
duced by the ith largest firm. These parameter estimates are

given in table IITI.

These results also are not very precise and would not
refute very many theories of oligopoly behavior. All of the
qualitative findings agree with Kwoka (1977) where the least-
squares search procedure of Quandt (1958) was used, but the
statistical findings are much less significant when one ac-
counts for the estimated break point. Two observations can
be made to help explain this lack of significance. The
residual variance is large relative to y, making it difficult
to estimate precisely (without a fairly large sample) the
point where monopoly profits emerge or stop increasing. The
second observation is that there may be no nice relationship
between profits and concentration. Even if the results were
estimated with greater precision, the results would be con-
sistent with several theories of oligopoly development. Some
industries could be behaving like a dominant firm model, other
industries could be guilty of collusive agreements, but the
above formulation, with one equation explaining all behavioral
relations, ignores the mechanism producing concentrated indus-
tries and will not easily distinguish among different theories.

Since the reason for concentration is also important, greater
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Table T11

Parameter kstimates Using Individua

5 b

10312 L2116
(107.68) (.068}
-123.57 .090
(39.433) (.036)
5.82 L1147
(3737.866) (.083)
38.976 -.635
(12294.27) (201.088)
51 62 3
072 -.035 .036
(.018) (.013) (.019)

Error Sum of Squares 1.808
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4.892
(3007.955)

034
(.051)

" 60

.035 .608

(.011) (3507)


http:12294.27

use of structural equation models will be most useful in explaining
the correlation between profitabilityv and concentration.
5. Conclusion

This paper has suggested a different approach to the
modelling and the estimation of relationships between vari-
ables 1in situations where the form of the relationship 1is
determined by a critical value of an additional exogenous
variable. [ have focused on the case where there 1s only
one critical value and where only the constant term in a
linear model is hypothesized to vary. However, it is ob-
vious that this approach can be generalized to allow for
different slope coefficients by interacting the constrained
polynomial equation (8) with additional slope parameters.
The procedure for allowing more than two regression regimes
is also straight forward conceptually, although it will be
more difficult to implement. The advantage of this technique
over the use ot linear splines (Poirier, 1975), is that it
is not necessary to specify a priori the join points (the
critical values) since they are estimated jointly with the
coefficients. The advantage of this technique over the
search procedure of Quandt (1958) is that we have a simple
procedure for estimating Standard errors of the estimated
critical values. The stochastic structure is different
from the one specified in Goldfeld and Quandt (1972, 1973),
so the choice here must be determined on theoretical grounds.
It seems plausible in describing some relationships to spe-

cify that the regression regime 1s chosen in a deterministic
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manner which would mean the technique described in this
paper would be appropriate. However, in cases where the
choice of regression regime is determined by a stochastic
process, the techniques described by Goldfeld and Quandt

(1972, 1973} would be more appropriate.
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