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Estimating Expected Losses in Auto Insurance
Introduction

The prediction from economic models of competitive markets
with full information is that the price of a commodity will be
equal to the marginal cost of providing that commodity. In
insurance markets this would be translated as the price of insur-
ing any risk would equal the expected loss of that risk plus a
loading for transaction costs. However, actual insurance markets
do not have full information and the expected value of the loss
from insuring a particular risk is not known with certainty. 1In
this situation, competitive pricing of any risk becomes more
complicated and in p&rticular would require some statistical
estimation and decision theory.

The risk assessment process for automobile insurance is
generally based on the priof losses of individuals of the popu-
lation of insureds. Characteristic such as garage location of
car, age, sex, etc., are collected and used to specify a risk
class. After adjustments for trend and loss development have
been made, the mean of past losses from a risk class is an
estimate of expected future losses for individuals with similar

s 1 . .
characteristics. Ignoring the procedure for best choosing

1 See "The Role of rRisk Classifications in Property and

Casualty Insurance" [11] fcr a full discussion of the actuarial
pricing procedures. T™i1is report is subsequently referred to as

the SRI report.



the characteristics which define a risk class, this basic
statistical approach is consistent with my economic intuition of
the outcome of a profit seeking insurance industry.

Actual cell means; however, are not always used as the
estimate of expected loss since some cells don't have enough
observations to generate "credible" estimates. When this is the
case, certain adjustments are made to the particular cell mean.
The optimal adjustments required depend on the model believed to
generate the cell observations and its relationship to other
available information. A statistical theory called credibility
theory has been developed which derives the necessary adjustments
for particular models.2 Actual insurance practice uses some
of these adjustments in forming their estimates of expected
losses, but it appears that the insurance industry doesn‘'t use
many of the sophisticated methods of statistical analysis.

Recently Chang and Fairly (2] criticized the traditional
estimation procedure used in automobile insurance rate making.
They proposed the use of an additive least-squares model with no
interactions over the traditional multiplicative method.
Additionally, the Massachusetts insurance commissioner required
the use of this method to generate the appropriate values of

price differentials in the state of Massachusetts. The analysis

Jewell [5] surveys the results of credibility thecry and
relates them to general statistical theory. The papers of a
conference on credibility theory appear in Kahn [6].
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of C¢hang and Fairley indicated that the least-squares procedure
was statistically better than the traditional method for the
situation analyzed.

Economic theory would suggest that in a competitive
environment, innovative and profit seeking firms would have found
énd eliminated the bias described by Chang and Fairley, although
the insurance commissioner in Massachusetts sugyested that it
might never have been corrected without regulatory encouragement.
It is hard to dispute either position and it may be that both
positions are correct. One would expect that the most successful
insurance companies would be the ones which used the most accur-
ate estimation methods, but it may take a long time to reveal the
best methocd and innovation may be accelerated by regulatory
encouragement,

The Massachusetts results, however, will not end the debate
about the appropriate model to use. The additive model is not
theoretically superior to the multiplicative model and other
evidence indicates the superior performance of the multiplicative
model in certain situations.3 This paper, therefore,
presents some further analysis of the multiplicative model. It
is suggested that even within the multiplicative framework that
insurance companies have historically operated, the traditional

estimating procedures yvield some of the same piases found by

3 See the discussion starting on page 76 of Automobile

Insurance Affordability (1].



Chang and Fairley. The traditional estimating procedures over-
charge individuals in the higher rated territories and classes

and undercharge those in lower rated territories and classes.

Model Specification

The two-way layout is the conceptual framework for the
analysis. There are I levels of a factor A (territory) and J
levels of a factor B (class plan) which classify all losses into
an IXJ table. The parameters of interest are the cell means,
i.e., the average loss for the ith territory and jth class com-
bination, denoted by Nij' In the classical analysis of vari-
ance, the cell means are not estimated directly but are factored
into additive effects (row and column) which are specific to the
levels of A and B plus an interaction effect of the ith level
of A with the jth level of B. However, this factorization has
imposed no restrictions on the original cell means and is not the
only natural way to factor the original cell means. A multi-
plicative factorization with an intuitive interpretation can
represent the cell means just as well as the additive form.

Using the notation of Scheffe [10], the classical analysis
of variance represents the cell means by

(l)Nij=u+ai+pj+yij

where
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The parameter u is the general mean, o; is the main effect of
the ith level of A, B is the main effect of the jth level of
B, and v;jj is the interaction of the ith level of A and the jth
level of B.4 In terms of the cell means, the parameters are
defined as

(2) V) = Z. Nij/IJ = Nol
1

L
)

Qi = 2. Nij/J - N.. Nio - No.

pj=li-NiJ/I-Noc=N.J-Noo

Yij = Njj = Nj. = Ny + N..
A natural multiplicative factorization of the cell means Nj j
{(assuming Nij > U), might be
(3) Njj = waj 85 Y45

where
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This formulation defines the parameters by

4 As defined by eguations (2), the general mean is the

average over rows or columns, main effects are defined as the
excess of the mean for the ith (jth) level over the general mean,

and interactions are the remaining excess from the specific cell

mean. See Scheffe {10].



(4) u = & z Kj§/1J = N..

o
U\

ai = ;,NiJ/JN.. = Ni./N..
]

B3 3 Nij/IN.. = N.j/N..
i

Yij = N.. Nij/Ni' N.j
The parameters in (4) can be given interpretations similar to
those in (2) by talking about the excess of the mean for the
ith level relative to the general mean etc. In the language of
the insurance industry the g; Would be the territorial
relativities and the by would be the class relativities.

The formulations in (1) and (3) are both equally general as
either can represent any possible values for the cell means
Nij- And particularly in an insurance context where the cell
means themselves are the interesting parameters,5 there is no
reason to use.or préfer either formulation. If sufficient data
were available to estimate each cell mean separately, there would
be no reason to estimate either the additive or the multiplica-

tive factorization. The cell means themselves would provide all

information of interest to the insurance company. However,

There is debate about whether means are the only inter-
esting parameters from a social point of view, Ferreira [3]. But

competitive pricing would lead to the use of cell means as the

cost basis for price.



sufficient data is generally not available to give precise esti-
mates of all cell means. Estimates of some cell means are sub-
ject to sufficient sampling variabili ty that'they are not con-
sidered credible to use as the basis of insurance pricing.

The lack of sutficient observations to use in estimating
cell means, however, is not peculiar to an insurance context.
Most applications of the analysis of variance have this problem
and it is one reason a factorization scheme has value. With
either a multiplicative (equation 3) or an additive (equation 1)
paramaterization (and assuming some of the parameters such as the
interaction terms are zero) one can use information from all
cells to obtain estimates of any particular cell mean. It is at
the point where some parame ters are specified a priori that
choosing between formulations (1) and (3) becomes important. But
this choice is an empirical question which could be resolved with
the proper data.

Consider the typical additive model or the model with no
interaction

(5) Njj =k +a; + 0y
This assumed structure has imposed certain restrictions on the
relationship between cell means, but it does not eliminate the
model (3) as being the true model or representation of .the cell
means. The factorization in (3) is perfectly general in
representing any IJ numbers {(since (3) imposes no restrictions on
the Nij) and can represent the model in (5) for any values 4,

a;i, and ﬁj. Using (3) to describe the structure (5) is not a
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parsimonous use of parameters but it is still theoretically

correct. What would be a specification error would be to use the
structure

(6) Nij = ugj »y
to represent the structure (5). It would also be a specification
error if one tried to represent the model (6) by the model (5)
because a different set of restrictions are imposed by (6) than
are imposed by (5).

Looked at from this perspective, the focus of a choice of
model to use in estimating expected losses should not be
restricted to a choice between the model (5) and the model (6).
Either formulation could be correct but it is also possible that
both specifications are incorrect and a factorization other than
(5) or (6) would be the correct model. The maintained hypothesis
or the most general hypothesis should be the Njj t hem$Selves.

The choice objective should be to find a factorization of the
Nij which is more parsimonious in its use of parameters than is
the use of the full 1J parameters embodied in the Nij-

The estimation and testing of model (5) relative to (1) has.
been extensively developed. Since this is not true for the model

{6), the next section will discuss its estimation.

Estimation
The stochastic structure of the data embodied in the multi-
plicative model must be the same as in the classical analysis of
variance since the only difference is in the factorization of the

-§=



cell means into primitive components. The observed loss for the
kth exposure in the ith territory and jth class combination is
therefore represented by

(7) Yjjk = WNij + Ejjx
where the Ej4x are random variables with mean zero (as a con-
sequence of defining Njj to be the true cell mean). If dis-
tributional assumptions are added to the structure (7), compari-
sons between alternative estimators could be made. However, for
a broad class of assumptions, least-squares estimators have
desirable properties6 and are the estimators presented in
this paper.

The least-squares estimates minimize
3 M3

z x(y..k_N..)Z
1 3=1 k=1 I 1)

(8)

[

i
where Kj4 is the number of exposures in the ith territory and
jth class combination. The values of ¥, ¢, and Pj which
minimize expression (8) given the actual losses Yjjk, are the
parameter values which satisfy the first order conditions for
minimization. The.firgt order conditions (the derivatives of
expression (8) set equal to zero) subject to the specification

(6) are

6 See Malinvaud [7), chapter 9, for the properties of the

least-squares estimators.
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(9) L & (Yi-‘K - u(xiﬁ-)llbj =0
j=1 k=1 -J ]
I Kij
(10) z L (Yijk - uaidj)bﬂi =0
i=1l k=1
Ki‘j ,
(11) F ; ) (Yijk - uaibj)aibj =0
ij k=1

From the constraints on the parameters, we can by summing

expressions (9) and (10) obtain

Kij
I < b Yijk bj
. (12) gl = u(p)l = ¢« Jj k=1
i=l 2
L Kiij
1 Kij
Z i Yijkai
(13) W = p(a)d = o i=1 k=1 ‘
J I Z
" K: '(!1
i=1 d

After making tne obvious substitutions we obtain

Kij '
(14) L L Yjqkby = of k(bj) & Kijpj‘
P k=1 j
Kij .
(15) e Yijkei = 5 (luj) & Kij“iz
i k=1 i

The expressions (14) and (15) suggest an iterative procedure

to obtain the values of oy Dj' and & which minimize (8).

For given values of »., we get values for «; from expression

(14), and for given values of a; expression (15) provides

values for the rjy. My experience is that these can be iterated

until mutually consistent values are obtained for the «; and

bj.
-10-



L3
i

vy

Certain comparisons should pbe made between the ajs v
and , defined by (11), (l1l4) and (15), and those defined in terms
of the underlying population means given inlﬂ4). The lgast-
squares parameter estimates are not the sample equivalents of the
population means given in (4). Even in the case of a balanced
design (equal observations per cell) where the sample equivalents
are easily determined, tne ortnogonality properties of the linear
model are not preserved by the multiplicative model. The import-
ance of this is that the marginal distribution or the row sums
and column sums are not surficient to estimate the parameter
values. The parameters have to be jointly estimated, and the
first order conditions are not equivalent to the traditional
procedures. These claims can be demonstrated by analyzing
equations (9), (10) and (11), but a simple example is easier to
follow.

Suppose we observe the cell means given in Table I, where
there are K observations per cell. The predicted values and the
parameter estimates for models (5) and (6) are as given. Using
sample equivalents of (4) woula ylield the same predicted value
for the multiplicative model as the linear model predicts. fThe

Il i
sample equivalents are ul = 5.0 a; = .8, uy = 1.2,

1 i ' L
by = 1, s, =1, but these cannot be tne minimizing para-
meter values as can be seen from the minimizing multiplicative

estimates in Table 1I.
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The sample eguivalents for this example would also be the
relativity estimates obtained from the traditional estimating
technique. The traditional method begins with a given set of

class relativities Byr and estimates territory relativities by

L Kis B u
. 1]
(16) o =3 ’
— Ki3

-

where v is the statewide average loss. Then the class
relativities would depend on the territory relativities and be

estimated by
LKi' Qi M
(17) Py = i ]

K..
z tJYijk
i k=l

The SRI report claims that iterating (16) and (17) until a stable

set of relativities is theoretically preferred, but most times a

one-pass camputation is deemed satisfactory.

Table 1 approximately here.
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TABLE 1

Actual Means

2 1 6
—— —‘-— ——
|
8 . 4
Linear Estimate
a | 4
\-—.—.— -— ol u: 5
6 | 6 Cll = -l

Pi

Residual sum of squares = 16K

Multiplicative Estimate

Residual sum of squares
Sum of residuals

4.130 1 3.448

4 W= 4.960
| a, = .764

6.682 , 5.579 ay = 1.236

15.280K
161K

"

1.090
.910



In general, the traditional method would not result in
estimates which would be normalized as in the previous section,
but this doesn't affect tne predicted loss costs. The important
point is that the marginal conditions 9-11 are not equivalent to
having the predicted row and column sums equal the actual row and
column sums.

| Classical tests of hypothesis are best suited for situations
where one is trying to choose between a general model and a
specific model which is nested in the more general model. Or in
the framework here, clasical tests of hypothesis are best
designed to distinguish between the models (5) and (1) or to
distinguish between the models (6) and (3). Although there is
some statistical theory to provide guidance in comparing the
model (5) with the model (6), there is no unigue best pro-
cedure.7 The appropriate procedure to use depends on the
final use to be made of the model, the prior information that is
available, the cost of making a wrong decision, etc. The import-
ant point is that rational individuals could still disagree about
the specification of a model after having analyzed the same data.
However, one would expect to see some divergence of opinion, and
the use of alternative models within the insurance industry if
the evidence was not overwhelmingly supportive of a particular

model .

Ramsey [9] and Gaver and Geisel [4] survey many of the
proposed test procedures.

-14-



Classical procedures can be used to test the hypoth.sis of
no interactions in either the multiplicative or the additive
framework. Exact tests of hypothesis are not availablelfor the
multiplicative model, but if we use the approximate test from
linear least-squares theory, (compare the percentage change in
residual sum of squares to an F distribution), there is a value
~of K that would lead one to reject both the additive least-
squafes model (5) and the multiplicative specification (6). For
some value of K, we would conclude that the specification (1) or
(3) must be the correct model for this data set. However, the
balanced design is not the data available in an insurance con-
text, and the test that all interactions are simultaneously zero
is not necessarily the interesting or useful hypothesis to test.
The interesting question to answer is how to estimate the
expected losses in those cells with "few“ observations when we
cannot be comfortable with the hypothesis that there are no inter-
actions. Statistical methods cannot be the only guidance or
procedures used to answer this question. The logical conclusion
from rejecting the hypothesis of no interaction is that the
restrictions embodied in (5) or (6) are inconsistent with the
observed data and eitner more complicated restrictions are appr-
priate or the cell means themselves are the correct parameteriza-
tion. The use of a single data set to identify more compl icated
restrictions is inappropriate (as most statistical texts point
out) and if processed simultaneously by different researchers,

-15-
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likely to lead to conflicting conclusions. The next seetion

considers this problem more carefully using actual loss data.

Massachusetts Loss Data

Table 2 and 3 from Chang and Fairley represents observed
average losses for a modified Massachusetts classification plan.
Table 4 and 5 contain the cqrresponding exposure figures. Chang
and Fairly in their analysis concluded that the additive least-
squares model gave a better fit to the data than the traditional
multiplicative model. My analysis also confirmed that the
additive least-squares model fit the data better than a multi-
plicative model which was estimated by least-squares. However,
the lack of fit was sufficiently great that one would predict in
competitive insurance markets, all firms would not use these
estimates as expected loss costs.

Tables 2, 3, 4, and 5 approximately here.

Cell means were the available observations which preclude
ekact tests of the models (5) and (6) with the full cell means
parameterization, but the results of the analysis are still
interesting. Table 6 presents the change in the residual sum of
squares when the additive and multiplicative restrictions are
imposed on the data. If the within cell variance is 1,000,000 or
more for the collision experience and the within cell variance is
400,000 or more for the combined compulsory experience, the
additive least-squares model with no interactions is consistent
with the data at a 5 percent level of significance. The multi-
plicative model without interactions is consistent with the data

-16-



Table 2

Ubserved Claims Amounts by Territory and Driver Class
Cambined Campulsory Coverages
1975 Massachusetts Private Passenger Auto
(Dollars)

”Driver Class

(1) (2) (3) (4) (5) (6) (7) Territorial
Weighted
Average
Territory 15 10812 30&31 24826 50 20840 22842
1 25.05 26.28 44,03 40,97 48.35 65.48 121.45 35.40
2 18.15 25,66 30.70 50.94 32.89 60.43 97.65 33.39
3 20.63 30.92 40.19 54.69 66.24 79.50 114.12 41.68
4 28.93 30.48 37.806 52.55 48,02 72.92 117.69 40.01
5 27.81 35.11 42,00 52.98 63,51 94,35 126.56 45.06
6 29.41 36.15 46.43 57.40 75.56 81.20 143.75 47.26
7 36.28 39.50 42,50 60.49 71.35 86,67 156.11 51.31
8 34,59 40.61 53.41 60.31 8l.41 93,19 133.87 51.71
9 40,62 42,77 67.34 60.91 64.62 93.87 162,96 55.13
10 43,71 48.77 59.30 71.54 75.35 103.53 152,65 59.77
11 37.03 42.19 63,93 49,61 64.26 111.02 129.92 52.75
12 33.56 49.70 58.82 82,28 63.69 112.90 127.49 58.56
13 47.12 49,67 99.76 82.52 101.06 108.88 158.01 65.11
14 70.69 55.64 58,51 77.90 126.98 116.72 160.38 69.07
15 38.68 69.74 76.87 82,08 103.33 116,55 162,71 75.98
Driver Class
Weighted
Average 32,95 38,87 47.91 58.91 70.40 89.006 134.20 49.24
Note: Entries in the body of the Table (cells) are cell total claims divided by cell total expasures.

Weighted averages are weighted by exposures. Sources of claim and exposure data by territory and
driver class: Massachusetts Autonpbile Rating and Accident Prevention Bureau, PDSRP330 of

October 26, 1976 and LsUM50 of October 28, 1976,

T O ey



(bserved Claims Amounts by Territory and Driver Class
Collision $200 Deductible

Tahle 3

1974-75 Massachusetts Private Passenger Auto

(Dollars)

Driver Class

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Territory 15 10&12 30&31 24526 50 20&40 22542

L 22.82 39,59 60.18 72.00 84.88 118,72 198,62

2 23.44 38,73 60,32 69.84 73.38 83.38 165.38

3 29,15 43.90 65.50 73.11 86.16 105,03 190.58

4 29.49 47.88 73.00 80.34 91.49 108,91 213,63

5 32.37 52.44 76.07 83,98 101.93 117.61 228,91

6 32.89 56,14 82.24 92,28 110,12 123,62 239.09

7 33.39 61.82 88.49 94,36 127.66 138.98 243.46

8 39,21 65.50 98.65 92.52 116.81 134,93 236.38

9 43,33 76.51 99,86 100.89 138,71 152,20 290.11

10 39.49 71.88 102,19 100.84 129,72 139,35 256.90

11 37.69 78.35 113.71 111,55 138,70 168.02 267.16

12 47,27 90,34 108.65 116.69 168,77 165.78 274.93

13 49,70 93,15 132,89 122,04 174.47 171.28 267,21

14 62.55 110,36 137.42 138.07 201,88 201.75 400.62

15 53.84 146.94 125.18 155,56 324.77 201.24 349.37

16 82.60 171.43 187.63 183,89 305,55 262,95 433.46

17 48,80 89,71 154.04 121,77 133,57 178.65 254,95

18 48.00 97,09 113.34 142.83 206.81 182,37 318.55
Driver Class

Weighted
Average 35,51 62.74 92.36 119.04 131,91 236.08

87.47

Territorial
Weighted
Average

50.66
48.84
56.46
60.89
66.59
71,02
76.84
80.26 -
91,75
85,28
94,84

101,43

108.34

129,99

153,10

182,48

102,38

111,54

76.28

Note:

Entries in the body of the Table (cells) are cell total claims divided by cell total exposures.,

Weighted averages are weighted by exposures.,

Sources of claim and exposure data by tarritory and

driver class: Maqsadmsetts Autanoaile Rating aml Accidﬂnt Preventxon BuLeau. PLERP330 of
O ol Gelolkex 28, 19/0.

Octoher 26, 1976 &

nd LOQD
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Table 4

Joint Distribution of Exposures by Territory and Driver Class
Cambined Compulsory 1975 Massachusetts Private Passenger Auto

(Car Years)
Driver Class
Territory 15 10&12 30&31 24826 50 20&40 22641
1 6,967 44,738 3,309 5,781 1,181 1,638 4,107
2 6,103 50,974 3,682 7.329 1,457 2,225 4,792
3 17,744 192,369 13,624 28,210 6,584 8,531 19,738
4 14,076 157,357 13,939 22,038 4,324 7,485 14,448
5 19,552 217,426 19,293 31,470 6,721 10,075 - 20,688
6 27,858 195,661 16,408 28,287 6,227 9,145 '~ 17,883
7 17,485 201,263 16,704 30,501 6,561 9,578 19,427
8 22,417 233,416 21,719 36,338 7,903 12,395 22,818
9 5,284 49,283 3,692 7,810 2,007 2,315 4,499
10 13,375 110,071 9,150 15,954 4,282 5,840 9,894
11 2,733 27,629 1,821 4,341 909 1,632 2,877
12 2,036 24,837 1,716 2,791 699 969 2,149
13 1,323 16,718 666 2,310 645 744 1,751
14 1,350 16,091 838 2,290 562 904 1,394
15 8,209

Driver Class
Total 156,512

91,947 5,305 9,995 2,656 3,857 6,734

1,629,780 131,866 235,445 52,718 77,333 153,199

Territorial
Total

67,721
76,562
286,800
233,667
325,225
291,469
301,519
357,006
74,89
168,566
41,942
35,197
24,157
23,429
128,703

2,436,853



Table 5

Joint Distribution of Exposures by lerritory and Driver Class
Collision ($200 Deductible Basis)
1974-75 Massachusetts Private Passenger Auto

+  (Car Years)
Driver Class
Territorial
Territory 15 10&l 2 30&31 24526 50 20840 225841 Total
1 6,492 46,647 4,010 5,922 1,072 1,558 2,636 68,337
2 6,112 56,986 4,728 8,146 1,492 2,307 3,361 83,132
3 17,510 219,788 17,308 32,096 6,825 9,269 14,126 316,922
4 14,394 182,941 17,918 25,404 4,545 8,193 10,409 263,804
5 20,416 256,638 24,601 37,692 7,229 11,537 15,866 373,979
6 18,644 232,596 2),702 34,802 6,791 10,539 14,091 339,165
7 18,598 246,306 21,168 37,852 7,226 11,114 15,236 357,500
8 23,490 281,512 30,634 44,730 8,425 14,747 18,318 421,856
9 5,543 60,753 5,117 9,762 2,261 2,803 3,974 90,213
10 15,530 139,062 13,241 20,962 4,893 7,254 8,243 209,185
11 2,751 32,824 2,521 5,232 928 1,922 2,218 48,396
12 2,176 28,276 2,142 3,460 663 1,118 1,422 39,257
13 1,198 18,263 854 2,599 658 81l 1,237 25,620
14 1,452 18,935 1,16l 2,862 615 1,119 1,158 27,302
15 1,698 20,997 763 2,309 550 823 915 . 28,055
16 2,319 45,122 2,941 4,564 1,115 1,550 1,779 59,390
17 1,072 11,666 752 1,772 323 447 576 16,607
18 2,795 25,995 1,398 3,640 558 1,623 1,297 37,306

Driver Class '
Total 162,189 1,925,307 172,959 283,806 56,169 88,734 116,862 2,806,026



at a 5 percent level of significance when the within cell vari-
ance is 1,250,000 for the collision experience and 560,000 for
the combined compulsory experience. The SRI study found the
within cell variance for personal injury claims in Massachusetts
in 1970 to be slightly over 400,000, But what does one conclude
from this? The statistics really only imply that the evidence is
not sufficiently contradictory of a noninteractive model to alter
the opinion of someone who thinks a noninteractive model is a
reasonable description of reality. However, even if the within

cell variance for collision was 1,300,000 and the within cell

variance for combined compulsory was 600,000, there is sufficient -

contradictions in the data to preaict that not all insurance
companies would hold to the noninteractive additive or multi-
plicative model. For each data set there are 3 cells with 10,000
or more car years of exposure tor which the pred}cted value lies
outside a 95 percent confidence interval using the individual
cell mean. This is not sufficient evidence using traditional
confidence levels to reject the null hypothesis of no inter-
actions overall, but is sufficient evidence to predict that some
entrepreneur would take a gamble on these particular cells and

use individual cell experience as an estimate of expected losses.,

Table 6 approximately here.
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Table 6

Cambined Campulsory Collision v,
Traditicnal Traditional
Iterated Iterated :

(not Iterated) Least-Squares (not Iterated) Least-Squares

Multiplicative Multiplicative Additive Multiplicative Multiplicative Additive )
sum of 68123968 58721360 42328722 190920624 155229792 127038370
Squared -
Residuals (67567936) (184743840)

e
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The most interesting comparison, however, is betg?en the
traditional estimating procedure fo; the multiplicative model and
the least-squares estimates of the multiplicative nod‘l. The
evidence just presented is not supportive of the multipiicative
model, but if one had strong priors for using the multiplicative
model, the statistical evidence would also not contradict its
use. However, in answer to the guestion in the National

Underwriter, “"Auto Rates: Do They Penalize The Young, The

Single, The Male," I respond yes when camparing the traditional
method of estimating rates to the least-squares estimating
procedure. The least-squares procedure generally yields rela-
tivities which are larger than the traditional relativities

when the traditional relativities (normalizéd as in equation (3))
are less than 1, and yields relativities which are smaller than
the traditional relativities when the traditional relativities
are greater than 1. Tables 7-10 present the relativities and
estimated loss costs for the Massachusetts data using the
traditional method including iterating and the least-squares

estimates of the multiplicative model.

Tables 7, 8, 9, and 10 approximately here.
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Tahle 7

Ileast Squares Multiplicative Estimates

Collision

Driver Class

Territorial
Territory (1) (2) (3) (4) (5) (6) (7) Relativities
1 25,92 46.74 64.03 67.03 88.46 94,58 172.03 6076
2 23.48 42.35 58.49 60.73 80.14 85.69 155.86 .5505
3 26.73 48.19 66.57 69.12 91.21 97.52 177.38 6265
4 29.25 52.74 72.85 75.64 99,81 106,72 194.12 .6856
5 31.58 56.94 78.65 81.65 107.75 115,21 209.56 .7402
6 33.58 60.56 83.65 86.85 114.61 122,54 222.8Y .7873
7 35.77 64.51 89.11 92.51 122,08 130,53 237.43 .8386
8 36.30 65.45 90.41 93.86 123.87 132.44 240.89 .8509
9 42.17 76.04 105.03 109.05 143.90 153.86 279.86 .9885
10 39.27 70,81 97.81 101,55 134.00 143.28 260,61 .9205
11 42.54 76.71 105.95 110,00 145,16 155.21 282.31 .9972
12 46,28 83.45 115,26 119.67 157.92 168.85 307.12 1,0848
13 46.88 84.53 116.76 121,22 159,97 171.04 311.11 1.0989
14 59.13 106.63 147.28 152,91 201,79 215.76 292.44 1,.3862
15 68.72 123,91 171.16 177.70 234.50 250.74 456 .06 1,6109
16 82.16 148.16 204,65 212.47 280,38 299.79 545.29 1.9260
17 46.35 83.57 115.44 119.85 158.16 169,11 307.60 1.0865
18 51.76 93.33 128,92 133,85 176,63 188.86 343.52 1,2133
Driver Class
Relativities .3244 .5850 .8080 .8389 1.1070 1.1837 2.1530

Normalized Adjusted Average = 131.4991

-



Table 8

Least Squares Multiplicative Estimates
Cambined Compulsory

Driver Class
Territorial
Territory (1) (2) (3) (4) (5) (6) (7)) Relativities
1 25.64 30.56 37.65 45.82 54.62 68,58 104.71 - .7421
2 22.97 27.37 33.73 41.04 48,92 61.42 93.78 .6647
3 27.86 " 33.20 40,91 49,78 59.34 74.51 113,75 .8062
4 27.32 32.56 40.12 48.81 58.19 73.06 111.55 .7906
5 30.45 36.29 44.72 54.41 64.86 81.44 124.35 .8813
6 32,53 38.77 47.78 58.13 69.30 87.01 132.85 9416
7 34.98 41.69 51,37 62.51 74.52 93.56 142.85 1.0125
8 33.89Y 40,39 49,76 60.55 72.18 90.63 138.37 9807
9 37.31 44 .47 54.79 66.67 79.48 99.79  152.36 1.0799
10 39.20 46,72 57.57 70.05 83.50  104.85 160.08 1.1346
11 33.85 40,34 49.71 60.49 72,10 90.53 138,22 9797
12 37.60 44.81 55.21 67.19 80.09 100,56 153.53 1.0882
13 41.72 49,72 61.26 74.54 88.86 111,57 170,35 1,2073
14 44,22 52,71 64.94 79.02 94.20 118,28 180.58 1,2799
15 48.75 58.10 71.58 87.11 103,83 130,37 199,05 1.4108
Driver Class
Relativities .4883 .5820 7171 .8726 1,0401 1,3060 1.9940

Nomalized Adjusted Average = 70,7597



_gz-.

Table 9

Traditional Iterated Multiplicative Estimates

Collision
Driver Class
Territorial
Territory (1) (2) (3) (4) (5) (6) (7) Relativities
1 24.61 43.08 61.40 64.19 82,06 90.44 165.96 5602
2 23,20 40.63 57.90 60,53 77.38 85,29 156.50 5283
3 26.26 45,98 65,53 68.51 87.58 96.52 177.12 «5979
4 28.63 50.12 71.44 74.68 95.47 105.22 193,08 6518
5 30.99 54.25 77.32 80,83 103.34 113.89 208,98 . 7055
6 33.12 57.99 82.65 86,40 110.46 121.74 223,38 .7541
7 35.71 62.53 89.12 93.17 ‘119,11 131,27 240,88 8131
8 36.98 64.75 92,29 96.48 123,34 135,93 249.43 8420
9 42,49 74.40 106.04 110.85 141,71 156.18 286.60 .9675
10 40,006 70.14 99,96 104,51 133,60 147,24 270,19 9121
11 43.60 76.33 108,79 113,73 145.40 160.24 294,05 .9926
12 48,58 85.06 121,23 126,73 162.01 178,56 327,66 1.1061
13 49,92 87.40 124,57 130,22 166.48 183.48 336.68 1,1365
14 60.21 105,42 150,25 157,08 200,80 221,31 406.10 1.3709
15 74.81 130,98 186.67 195.15 249.48 274.95 504,54 1.7032
16 88.85 155,55 221,70 231.77 296,29 326.55 599,21 2.,0228
17 49.14 86.04 122,62 124.19 163.88 180,62 331.43 1.1188
18 53.44 93.56 133.34 139.40 178.21 196.41 360,40 1,2166
Driver Class
Relativities 3239 5672 .8083 .8450 1,0803 1.1906 2.1847

Normalized Adjusted Average = 135,5926
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Table 10

Traditional Iterated Multiplicative Estimates
Combined Compulsory

Driver Class

Territorial
Territory (1) (2) (3) (4) (5) (6) (7) Relativities
1 24.30 28,56 35.53 42.64 51.59 65.29 100.08 .6940
2 22,54 26.49 32.95 40.48 . 47,85 60.56 92.83 .6438
3 27.62 32.46 40.38 49.60 58.63 74.21 113.74 .7888
4 26.57 31.58 39.28 48.24 57.03 72,18 110.64 .7673
5 30.13 35.41 44,04 54.09 63.94 80.93 124 .05 .8603
6 31.72 37.28 46.37 56.96 67.33 85.22 130.62 9059
7 34.16 40.15 49.%4 61.34 72.51 91.77 140.67 .9755
8 34.33 40.34 50.18 61.63 72.86 92.21 141.34 9802 ’
9 36.97 43.45 54.04 66.38 78.47 99.32 152,23 1.0557
10 40,25 47,31 58.84 72.28 85.44 108.14 165,75 1.1495
11 34.66 40,73 50.67 62.23 73.57 93.11 142.72 9898
12 39.88 46.87 58.30 71.61 84.65 107.14 164.23 1.1389
13 42.89 50.40 62.69 77.00 91.03 115.21 176 .59 1.2247
14 46.30 54.41 67.68 83.13 98.27 124.38 190,65 1.,3221
15 52.65 61.88 76.97 94,54 111.76 141.45 216.81 1.5036
Driver Class
Relativities  .4875 .5729 7126 .8753 1.0347 1,3096 2,007
Normmalized Adjusted Average = 71.8346 A ™
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This is a difficult result to reconcile with profit maxi-
mizing behavior. The use of estimates of loss cost which are too
high and which don't result in loss of market share is perfectly
understandable. If one can charge a price higher than costs, one
makes a larger profit. But to use an estimate of loss costs
which are too low, implies one is losing money on those
indiviéuals. Monopoly positions or any other market phenomena
would not produce this result in a profit maximizing environment.
A possible answer is that some companies are more innovative than
most, but because of government regulation they cannot expand as
rapidly as might be predicted. Also, the phenomena of company
specialization and underwriting might make these results less
important if most data used to estimate losses come from only a
few risk classes. But a full understanding of the behavior in
canpetitive terms is still lacking. I will admit to being pos-
sibly missing something, but as of now, I would conclude that the

insurance industry is not very innovative.
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Concliusion

The analysis of this paper supports the decision and find-
ings of the Massachusetts Insurance Commissioner. The tradi-
tional pricing procedures contain biases that result in
overcharging individuals in the highest rated risk classes. The
- biases however are not necessarily a result of the multiplicative
model. They are a result of the estimating techniques tradition-
ally used by the insurance industry. But the most important con-
clusion to be drawn from the analysis concerns the operation of
industry rating bureaus.

There are benefits to the statistical pooling of losses from
many cbmpanies. More accurate results are obtained when more
data go into the analysis. Small companies are able to viabily
compete with large companies when they have access to statistical
analysis of data setg which are broader than their own company
experience. But there are also benefits from divergent opinions.
Any mechanism which permits the pooling of experience data from
many companies should also provide for independent access and

analysis by various technicians.

-2Q -
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