Competition Policy in Selection Markets

E. Glen Weyl

joint work with Neale Mahoney, Chicago, and André Veiga, Oxford

Microsoft Research New England and University of Chicago

Seventh Annual Microeconomics Conference Federal Trade Comission October 16, 2014

Introduction Basic price theory mode Imperfect competition

Motivation

Introduction Basic price theory mode Imperfect competition

Motivation

1970's: information challenges efficiency of competition

Akerlof, Rothschild-Stiglitz formalize "cream-skimming"

Introduction Basic price theory mode Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition
- Today: how should this influence competition policy?

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition
- Today: how should this influence competition policy?
 - When do these effects undermine competition value?

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition
- Today: how should this influence competition policy?
 - When do these effects undermine competition value?
 - How to design competition and merger review?

Introduction Basic price theory model Imperfect competition

Motivation

- Akerlof, Rothschild-Stiglitz formalize "cream-skimming"
 - Old informal defense made by monopolists
 - Huge impact in economics, still hear this argument but...
- Never really made it into competition policy; why?
 - Models are a mess: market collapse, non-existence
 - What to measure to figure out plausibility?
- Driven by only one dimension of heterogeneity (health)
 - Recent work by Einav, Finkelstein and Levin relaxes
 - But all focuses on planner or perfect competition
- Today: how should this influence competition policy?
 - When do these effects undermine competition value?
 - How to design competition and merger review?
- Combines Mahoney-Weyl (2014), Veiga-Weyl (2014)

Introduction Basic price theory model Imperfect competition

The Einav and Finkelstein model

Introduction Basic price theory model Imperfect competition

The Einav and Finkelstein model

Basic, classic model is Akerlof's lemons: just quality

Einav and Finkelstein enrich to multidimensional

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)
 - Let $T(p) \equiv \{t : u(t) \ge p\}$ purchasers

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)
 - Let $T(p) \equiv \{t : u(t) \ge p\}$ purchasers

•
$$\partial T(p) \equiv \{t : u(t) = p\}$$
 marginals

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)
 - Let $T(p) \equiv \{t : u(t) \ge p\}$ purchasers

•
$$\partial T(p) \equiv \{t : u(t) = p\}$$
 marginals

• Demand
$$Q(p) = \int_{T(p)} f(t) dt$$

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)
 - Let $T(p) \equiv \{t : u(t) \ge p\}$ purchasers
 - $\partial T(p) \equiv \{t : u(t) = p\}$ marginals
 - Demand $Q(p) = \int_{T(p)} f(t) dt$
 - Inverse demand P(q) = Q(P(q))

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)
 - Let $T(p) \equiv \{t : u(t) \ge p\}$ purchasers
 - $\partial T(p) \equiv \{t : u(t) = p\}$ marginals
 - Demand $Q(p) = \int_{T(p)} f(t) dt$
 - Inverse demand P(q) = Q(P(q))

• Cost
$$C(q) \equiv \int_{\mathcal{T}(P(q))} c(t) f(t) dt$$

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)
 - Let $T(p) \equiv \{t : u(t) \ge p\}$ purchasers
 - $\partial T(p) \equiv \{t : u(t) = p\}$ marginals
 - Demand $Q(p) = \int_{T(p)} f(t) dt$
 - Inverse demand P(q) = Q(P(q))
 - Cost $C(q) \equiv \int_{\mathcal{T}(P(q))} c(t) f(t) dt$
 - Average cost $AC(q) \equiv \frac{C(q)}{q}$, marginal cost $MC(q) \equiv C'(q)$

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)
 - Let $T(p) \equiv \{t : u(t) \ge p\}$ purchasers
 - $\partial T(p) \equiv \{t : u(t) = p\}$ marginals
 - Demand $Q(p) = \int_{T(p)} f(t) dt$
 - Inverse demand P(q) = Q(P(q))
 - Cost $C(q) \equiv \int_{\mathcal{T}(P(q))} c(t) f(t) dt$
 - Average cost $AC(q) \equiv \frac{C(q)}{q}$, marginal cost $MC(q) \equiv C'(q)$
 - "Free entry" AC(q) = P(q), just like average cost pricing

The Einav and Finkelstein model

- Einav and Finkelstein enrich to multidimensional
 - But also generate very simple, general exposition
- \implies Let me begin by presenting, building on their model
 - Individuals described by multi-D type t, distribution f(t)
 - Willing to pay u(t), cost of serving t is c(t)
 - Let $T(p) \equiv \{t : u(t) \ge p\}$ purchasers
 - $\partial T(p) \equiv \{t : u(t) = p\}$ marginals
 - Demand $Q(p) = \int_{T(p)} f(t) dt$
 - Inverse demand P(q) = Q(P(q))
 - Cost $C(q) \equiv \int_{\mathcal{T}(P(q))} c(t) f(t) dt$
 - Average cost $AC(q) \equiv \frac{C(q)}{q}$, marginal cost $MC(q) \equiv C'(q)$
 - "Free entry" AC(q) = P(q), just like average cost pricing
 - Analyze, illustrate graphically

Introduction Basic price theory model Imperfect competition

Visualizing adverse and advantageous selection

Introduction Basic price theory mode Imperfect competition

Adding imperfect competition

Introduction Basic price theory mode Imperfect competition

Adding imperfect competition

Neale and I added imperfect competition to this

Simplest case shown in graphs is monopoly

Introduction Basic price theory model Imperfect competition

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects

Introduction Basic price theory mode Imperfect competition

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct

Introduction Basic price theory model Imperfect competition

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - Switchers" attracted from rivals average purchasers

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - Switchers" attracted from rivals average purchasers
 - Immediate Cournot, $t \perp$ to horizontal preference Bertrand

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - Switchers" attracted from rivals average purchasers
 - Immediate Cournot, $t \perp$ to horizontal preference Bertrand
- Under these, interpolation accurate

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - Switchers" attracted from rivals average purchasers
 - Immediate Cournot, $t \perp$ to horizontal preference Bertrand
- Under these, interpolation accurate
- Derive results on selection, competition; here latter

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - Switchers" attracted from rivals average purchasers
 - Immediate Cournot, $t \perp$ to horizontal preference Bertrand
- Under these, interpolation accurate
- Derive results on selection, competition; here latter
 - Competition always beneficial under adverse

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - Switchers" attracted from rivals average purchasers
 - Immediate Cournot, $t \perp$ to horizontal preference Bertrand
- Under these, interpolation accurate
- Derive results on selection, competition; here latter
 - Competition always beneficial under adverse
 - Market power only exacerbates under-supply

Adding imperfect competition

- Simplest case shown in graphs is monopoly
 - *MR* = *MC*; monopolist internalizes all industry-wide effects
- Btwn $\theta MR + (1 \theta)P = \theta MC + (1 \theta)AC$; θ = conduct
- Weyl-Fabinger (13) in standard symmetric oligopoly
 - Nests Cournot (1/n), diff. Bertrand (1 D), conjectures, etc.
- We strengthened notion of symmetry for selection
 - At symmetric eq., random sample of purchasers
 - Switchers" attracted from rivals average purchasers
 - Immediate Cournot, $t \perp$ to horizontal preference Bertrand
- Under these, interpolation accurate
- Derive results on selection, competition; here latter
 - Competition always beneficial under adverse
 - Market power only exacerbates under-supply
 - 2 However, with advantageous, optimal θ^{\star}

Introduction Findings Policy Implications

Did deregulation fuel inefficient subprime boom?

In 1999 financial reform aimed to increase competition

Sounds sensible from standard perspective

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called *advantageous selection*

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal
- ⇒ Competition may have led to credit glut

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal
- ⇒ Competition may have led to credit glut
 - Could this have played significant role in 2000's?

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal
- → Competition may have led to credit glut
 - Could this have played significant role in 2000's?
 - Identifying variation weak from the housing market

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal
- → Competition may have led to credit glut
 - Could this have played significant role in 2000's?
 - Identifying variation weak from the housing market
 - Einav-Jenkins-Levin: sub-prime auto loans, quasi-random

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal
- \implies Competition may have led to credit glut
 - Could this have played significant role in 2000's?
 - Identifying variation weak from the housing market
 - Einav-Jenkins-Levin: sub-prime auto loans, quasi-random
 - Just one firm, but if symmetric (as below) back out market

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal
- \implies Competition may have led to credit glut
 - Could this have played significant role in 2000's?
 - Identifying variation weak from the housing market
 - Einav-Jenkins-Levin: sub-prime auto loans, quasi-random
 - Just one firm, but if symmetric (as below) back out market
 - Don't know market power θ , so subsidy/tax for each

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal
- → Competition may have led to credit glut
 - Could this have played significant role in 2000's?
 - Identifying variation weak from the housing market
 - Einav-Jenkins-Levin: sub-prime auto loans, quasi-random
 - Just one firm, but if symmetric (as below) back out market
 - Don't know market power θ , so subsidy/tax for each
 - \implies If $\theta < .2$ (standard goal), > \$4400 = 41% subsidy!!

- Sounds sensible from standard perspective
- But this encouraged lenders to chase bad risks
 - Why? Wanted good risks, but competing brings in bad
 - This phenomenon called advantageous selection
 - Average borrower better than marginal
- → Competition may have led to credit glut
 - Could this have played significant role in 2000's?
 - Identifying variation weak from the housing market
 - Einav-Jenkins-Levin: sub-prime auto loans, quasi-random
 - Just one firm, but if symmetric (as below) back out market
 - Don't know market power θ , so subsidy/tax for each
 - \implies If $\theta < .2$ (standard goal), > \$4400 = 41% subsidy!!
 - \Rightarrow Pro-competitive reforms may have caused real harm

Introduction Findings Policy Implications

Was there too much subprime competition? Competitive insurance product design

Why and how beneficial is market power?

Introduction Findings Policy Implications

Was there too much subprime competition? Competitive insurance product design

Product design in selection markets

With adverse selection (common in insurance) opposite result

But Rothschild-Stiglitz saw other problem with competition

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address, using EF-style approach

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)
- \implies Trade-off in competition: coverage \uparrow but quality \downarrow

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)
- \implies Trade-off in competition: coverage \uparrow but quality \downarrow
 - Calibrate using empirical data from Handel et al. (2014)

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)
- \implies Trade-off in competition: coverage \uparrow but quality \downarrow
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)
- \implies Trade-off in competition: coverage \uparrow but quality \downarrow
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion
 - Could off-set adverse selection on mean but...

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)
- \implies Trade-off in competition: coverage \uparrow but quality \downarrow
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion
 - Could off-set adverse selection on mean but...
 - Variance very positively correlated, so worsens!
Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)
- \implies Trade-off in competition: coverage \uparrow but quality \downarrow
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion
 - Could off-set adverse selection on mean but...
 - Variance very positively correlated, so worsens!
 - Market power dampens this cream-skimming however

Product design in selection markets

With adverse selection (common in insurance) opposite result

- But Rothschild-Stiglitz saw other problem with competition
 - Not number of individuals insured, but quality of insurance
 - Cream-skim by cutting quality and price
- André and I address , using EF-style approach
- Hoteling model w linear actuarial rate, as well as price
 - Cream skimming grows w competition (steal from rivals)
- \implies Trade-off in competition: coverage \uparrow but quality \downarrow
 - Calibrate using empirical data from Handel et al. (2014)
 - Mean negatively correlated with risk-aversion
 - Could off-set adverse selection on mean but...
 - Variance very positively correlated, so worsens!
 - Market power dampens this cream-skimming however
 - Can it restore positive insurance, or even good outcome?

Introduction Findings Policy Implications

Was there too much subprime competition? Competitive insurance product design

Surprising benefit of market power in insurance

Introduction Findings Policy Implications

Merger policy More general lessons for competition policy

Concrete challenges for merger policy

Most canonical tool of competition policy merger analysis

 \implies Natural place to look for competition policy implications

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection

Most canonical tool of competition policy merger analysis

- Natural place to look for competition policy implications \implies
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection

Worst when reduces competition by most

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection
 - 2 Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection
 - Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is
 - Marginal cost should be used to calculate mark-up

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection
 - 2 Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is
 - Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection
 - 2 Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is
 - Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct
 - Demand data more important than administrative data

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection
 - Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is
 - Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct
 - Oemand data more important than administrative data
 - Administrative data only gives average, not marginal cost

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection
 - Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is
 - Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct
 - Oemand data more important than administrative data
 - Administrative data only gives average, not marginal cost
 - But this is what you want with selection

- \implies Natural place to look for competition policy implications
 - Four principles in guidelines (partly) reversed:
 - Price-raising incentives are harmful
 - New standard is to measure this "upward pricing pressure"
 - But this may also arise from advantageous selection
 - Worst when reduces competition by most
 - Under advantageous selection, more beneficial larger D is
 - Marginal cost should be used to calculate mark-up
 - To predict price rise, mark-up over average cost correct
 - Demand data more important than administrative data
 - Administrative data only gives average, not marginal cost
 - But this is what you want with selection
 - First-order condition backs out incorrect cost for UPP

Introduction Findings Policy Implications

Merger policy More general lessons for competition policy

What types competition are really harmful?

Note that message is not harmful competition overall

Some dimensions, cases competition dangerous

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 - Except with advantageous, not too competitive

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 - Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 - Second with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 - Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse
- ⇒ Selection challenges competition policy

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 - Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse
- → Selection challenges competition policy
 - Makes us think more carefully about how, when

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 - Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse
- ⇒ Selection challenges competition policy
 - Makes us think more carefully about how, when
 - But it is not a carte blanche counter-argument

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 - Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse
- ⇒ Selection challenges competition policy
 - Makes us think more carefully about how, when
 - But it is not a carte blanche counter-argument
 - Framework allows us to measure, and if wrong to rebut

- Some dimensions, cases competition dangerous
 - Limit competition along selection dimensions
 - Insurance rates, some types of credit contract terms, etc.
 - Instead competition on costs, price, quantity
 - There, at least with adverse selection, beneficial
 - Except with advantageous, not too competitive
 - If this is a serious problem, standards to prove
 - Optimal market power: not unlimited excuse
- ⇒ Selection challenges competition policy
 - Makes us think more carefully about how, when
 - But it is not a carte blanche counter-argument
 - Framework allows us to measure, and if wrong to rebut
 - Currently not formal, hard to say much about it!