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Abstract what is necessary to provide useful explanations. Despite 

Privacy and transparency are two key foundations of trustwor-
thy machine learning. Model explanations offer insights into a 
model’s decisions on input data, whereas privacy is primarily 
concerned with protecting information about the training data. 
We analyze connections between model explanations and the 
leakage of sensitive information about the model’s training 
set. We investigate the privacy risks of feature-based model 
explanations using membership inference attacks: quantifying 
how much model predictions plus their explanations leak infor-
mation about the presence of a datapoint in the training set of a 
model. We extensively evaluate membership inference attacks 
based on feature-based model explanations, over a variety of 
datasets. We show that backpropagation-based explanations 
can leak a signifcant amount of information about individual 
training datapoints. This is because they reveal statistical infor-
mation about the decision boundaries of the model about an 
input, which can reveal its membership. We also empirically 
investigate the trade-off between privacy and explanation qual-
ity, by studying the perturbation-based model explanations. 

1 Introduction 
Black-box machine learning models are often used to make 
high-stakes decisions in sensitive domains. However, their in-
herent complexity makes it extremely diffcult to understand 
the reasoning underlying their predictions. This development 
has resulted in increasing pressure from the general public 
and government agencies; several proposals advocate for 
deploying (automated) model explanations (Goodman and 
Flaxman 2017). In recent years, novel explanation frame-
works have been put forward; Google, Microsoft, and IBM 
now offer model explanation toolkits as part of their ML 
suites.1 

Model explanations offer users additional information 
about how the model made a decision with respect to their 
data records. Releasing additional information is, however, a 
risky prospect from a privacy perspective. The explanations, 
as functions of the model trained on a private dataset, might 
inadvertently leak information about the training set, beyond 
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this potential risk, there has been little effort to analyze and 
address any data privacy concerns that might arise due to the 
release of model explanations. This is where our work comes 
in. We initiate this line of research by asking the following 
question: can an adversary leverage model explanations 
to infer private information about the training data? 

The established approach to analyze information leakage 
in machine learning algorithms is to take the perspective of an 
adversary and design an attack that recovers private informa-
tion, thus illustrating the defciencies of existing algorithms 
(e.g., (Aïvodji, Bolot, and Gambs 2020; Long, Bindschaedler, 
and Gunter 2017; Sablayrolles et al. 2019; Yeom et al. 2018)). 
In this work, we use adversarial analysis to study existing 
methods. We focus on a fundamental adversarial analysis, 
called membership inference (Shokri et al. 2017a). In this 
setting, the adversary tries to determine whether a datapoint 
is part of the training data of a machine learning algorithm. 
The success rate of the attack shows how much the model 
would leak about its individual datapoints. 

This approach is not specifc to machine learning. (Homer 
et al. 2008) demonstrated a successful membership infer-
ence attack on aggregated genotype data provided by the US 
National Institutes of Health and other organizations. This 
attack was successful despite the NIH witholding public ac-
cess to their aggregate genome databases (de Souza 2008). 
With respect to machine learning systems, the UK’s infor-
mation commissioners offce explicitly states membership 
inference as a threat in its guidance on the AI auditing frame-
work (Offce 2020). Beyond its practical and legal aspects, 
this approach is used to measure model information leakage 
(Shokri et al. 2017a). Privacy-preserving algorithms need 
to be designed to establish upper bounds on such leakage 
(notably using differential privacy algorithms, e.g., (Abadi 
et al. 2016)) 

Our Contributions Our work is the frst to extensively an-
alyze the data privacy risks that arise from releasing model 
explanations, which can result in a trade-off between trans-
parency and privacy. This analysis is of great importance, 
given that model explanations are required to provide trans-
parency about model decisions, and privacy is required to 
protect sensitive information about the training data. We 
provide a comprehensive analysis of information leakage 
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on major feature-based model explanations. We analyze 
both backpropagation-based model explanations, with an 
emphasis on gradient-based methods (Baehrens et al. 2009; 
Klauschen et al. 2015; Shrikumar, Greenside, and Kundaje 
2017b; Sliwinski, Strobel, and Zick 2019; Sundararajan, Taly, 
and Yan 2017) and perturbation-based methods (Ribeiro, 
Singh, and Guestrin 2016; Smilkov et al. 2017). We assume 
the adversary provides the input query, and obtains the model 
prediction as well as the explanation of its decision. We ana-
lyze if the adversary can trace whether the query was part of 
the model’s training set. 

For gradient-based explanations, we demonstrate how and 
to what extent backpropagation-based explanations leak in-
formation about the training data (Section 3). Our results 
indicate that backpropagation-based explanations are a major 
source of information leakage. We further study the effec-
tiveness of membership inference attacks based on additional 
backpropagation-based explanations (including Integrated 
Gradients and LRP). These attacks achieve comparable, al-
beit weaker, results than attacks using gradient-based expla-
nations. 

We further investigate why this type of model explana-
tion leaks membership information (Section 4). Note that 
the model explanation, in this case, is a vector where each 
element indicates the infuence of each input feature on the 
model’s decision. We demonstrate that the variance of a 
backpropagation-based explanation (i.e, the variance of the 
infuence vector across different features) can help identify 
the training set members. This link could be partly due to 
how backpropagation-based training algorithms behave upon 
convergence. The high variance of an explanation is an indi-
cator for a point being close to a decision boundary, which 
is more common for datapoints outside the training set. Dur-
ing training the decision boundary is pushed away from the 
training points. 

This observation links the high variance of the explanation 
to an uncertain prediction and so indirectly to a higher predic-
tion loss. Points close to the decision boundary have both an 
uncertain prediction and a high variance in their explanation. 
This insight helps to explain the leakage. High prediction and 
explanation variance is a good proxy for a higher prediction 
loss of the model around an input. This is a very helpful sig-
nal to the adversary, as membership inference attacks based 
on the loss are highly accurate (Sablayrolles et al. 2019): 
Points with a very high loss tend to be far from the decision 
boundary and are also more likely to be non-members. 

Further, our experiments on synthetic data indicate that 
the relationship between the variance of an explanation and 
training data membership is greatly affected by data dimen-
sionality. For low dimensional data, membership is uncorre-
lated with explanation variance. These datasets are relatively 
dense. There is less variability for the learned decision bound-
ary and members and non-members are equally likely to be 
close to it. Interestingly, not even the loss-based attacks are 
effective in this setting. Increasing the dimensionality of the 
dataset, and so decreasing its relative density, leads to a better 
correlation between membership and explanation variance. 
Finally, when the dimensionality reaches a certain point the 
correlation decreases again. This decrease is inline with a 

decrease in training accuracy for the high dimensional data. 
Here, the model fails to learn. 

To provide a better analysis of the trade-off between pri-
vacy and transparency, we analyze perturbation-based expla-
nations, such as SmoothGrad (Smilkov et al. 2017). We show 
that, as expected, these techniques are more resistant to mem-
bership inference attacks (Section 5). We, however, attribute 
this to the fact that they rely on out-of-distribution samples 
to generate explanations. These out-of-distribution samples, 
however, can have undesirable effects on explanation fdelity 
(Slack et al. 2020). So, these methods can achieve privacy at 
the cost of the quality of model explanations. 

Additional results in supplementary material In the sup-
plementary material, we study another type of model explana-
tion: the example-based method based on infuence-functions 
proposed by Koh and Liang (2017). This method provides 
infuential training datapoints as explanations for the decision 
on a particular point of interest (Appendix B). This method 
presents a clear leakage of training data, and is far more 
vulnerable to membership inference attacks; in particular, 
training points are frequently used to explain their own pre-
dictions (Appendix C). Hence, for this method, we focus 
on a more ambitious objective of reconstructing the entire 
training dataset via dataset reconstruction attacks (Dwork 
et al. 2017). 

The challenge here is to recover as many training points 
as possible. Randomly querying the model does not recover 
many points. A few peculiar training data records — espe-
cially mislabeled training points at the border of multiple 
classes — have a strong infuence over most of the input 
space. Thus, after a few queries, the set of reconstructed data 
points converges. We design an algorithm that identifes and 
constructs regions of the input space where previously re-
covered points will not be infuential (Appendix D). This 
approach avoids rediscovering already revealed instances and 
improves the attack’s coverage. We prove a worst-case upper 
bound on the number of recoverable points and show that our 
algorithm is optimal in the sense that for worst-case settings, 
it recovers all discoverable datapoints. 

Through empirical evaluation of example-based model ex-
planations on various datasets (Appendix E), we show that 
an attacker can reconstruct (almost) the entire dataset for 
high dimensional data. For datasets with low dimension-
ality, we develop another heuristic: by adaptivley querying 
the previously recovered points, we recover signifcant parts 
of the training set. Our success is due to the fact that in the 
data we study, the graph structure induced by the infuence 
function over the training set, tends to have a small number 
of large strongly connected components, and the attacker is 
likely to recover at least all points in one of them. 

We also study the infuence of dataset size on the success 
of membership inference for example-based explanations. 
Finally, as unusual points tend to have a larger infuence on 
the training process, we show that the data of minorities is 
at a high risk of being revealed. 



��� ���

����

2 Background and Preliminaries 
We are given a labeled dataset X ⊆ Rn , with n features 
and k labels. The labeled dataset is used to train a model c, 
which maps each datapoint ~x in Rn to a distribution over k 
labels, indicating its belief that any given label fts ~x. Black-
box models often reveal the label deemed likeliest to ft the 
datapoint. The model is defned by a set of parameters θ 
taken from a parameter space Θ. We denote the model as 
a function of its parameters as cθ. A model is trained to 
empirically minimize a loss function over the training data. 
The loss function L : X × Θ → R takes as input the model 
parameters θ and a point ~x, and outputs a real-valued loss 
L(~x, θ) ∈ R. The objective of a machine-learning algorithm 
is to identify an empirical loss minimizer over the parameter 
space Θ: X1 

θ̂  ∈ argminθ∈Θ L(~x, θ) (1)|X | 
~x∈X 

2.1 Model Explanations 
As their name implies, model explanations explain model 
decisions on a given point of interest (POI) ~y ∈ Rn . An 
explanation φ takes as input the dataset X , labels over X — 
given by either the true labels ` : X → [k] or by a trained 
model c — and a point of interest ~y ∈ Rn . Explanation 
methods sometimes assume access to additional information, 
such as active access to model queries (e.g. (Adler et al. 2018; 
Datta, Sen, and Zick 2016; Ribeiro, Singh, and Guestrin 
2016)), a prior over the data distribution (Baehrens et al. 
2009), knowledge of the model class (e.g. that the model is a 
neural network (Ancona et al. 2019; Shrikumar, Greenside, 
and Kundaje 2017a; Sundararajan, Taly, and Yan 2017), or 
that we know the source code (Datta et al. 2017; Ribeiro, 
Singh, and Guestrin 2018)). We assume that the explanation 
function φ(X , c, y,~ ·) is feature-based (here the · operator 
stands for potential additional inputs), and often refer to the 
explanation of the POI ~y as φ(~y), omitting its other inputs 
when they are clear from context. 

The i-th coordinate of a feature-based explanation, φi(~y) 
is the degree to which the i-th feature infuences the label 
assigned to ~y. Generally speaking, high values of φi(~y) imply 
a greater degree of effect; negative values imply an effect 
for other labels; a φi(~y) close to 0 normally implies that 
feature i was largely irrelevant. Ancona et al. (2018) provide 
an overview of feature-based explanations (also called attri-
bution methods). Many feature-based explanation techniques 
are implemented in the INNVESTIGATE library2 (Alber et al. 
2018) which we use in our experiments. Let us briefy review 
the explanations we analyze in this work. 

Backpropagation-Based Explanations Backpropagation-
based methods rely on a small number of backpropagations 
through a model to attribute infuence from the prediction 
back to each feature. The canonical example of this type of ex-
planation is the gradient with respect to the input features (Si-
monyan, Vedaldi, and Zisserman 2013), we focus our analysis 
on this explanation. Other backpropagation-based explana-
tions have been proposed (Baehrens et al. 2009; Klauschen 

2https://github.com/albermax/innvestigate 

et al. 2015; Shrikumar, Greenside, and Kundaje 2017b; Sli-
winski, Strobel, and Zick 2019; Smilkov et al. 2017; Sun-
dararajan, Taly, and Yan 2017). 

Gradients Simonyan, Vedaldi, and Zisserman (2013) in-
troduce gradient-based explanations to visualize image clas-

∂c sifcation models, i.e. φi(~y) = ∂xi 
(~y). The authors utilize 

∂c the absolute value of the gradient, i.e. ∂xi 
(~y) ; however, 

outside image classifcation, it is reasonable to consider nega-
tive values, as we do in this work. We denote gradient-based 
explanations as φGRAD . Shrikumar, Greenside, and Kundaje 

∂c (2017b) propose setting φi(~y) = yi × ∂xi 
(~y) as a method to 

enhance numerical explanations. Note that since an adversary 
would have access to ~y, releasing its Hadamard product with 
φGRAD (~y) is equivalent to releasing φGRAD (~y). 

Integrated Gradients Sundararajan, Taly, and Yan (2017) 
argue that instead of focusing on the gradient it is better to 
compute the average gradient on a linear path to a baseline 
~xBL (often ~xBL = ~0). This approach satisfes three desirable 
axioms: sensitivity, implementation invariance and a form of 
completeness. Sensitivity means that given a point ~x ∈ X 
such that xi =6 xBL,i and c(~x) =6 c(~xBL), then φi(~x) 6=Pn
0; completeness means that x) = c(~x) − c(~ i=1 φi(~ xBL). 
Mathematically the explanation can be formulated as Z 1 ∂c(~xα)
φINTG (~x)i , (xi − ~xBL,i) · .α∂~x αα=0 i ~x =~x+α(~x−~xBL) 

Guided Backpropagation Guided Backpropagation 
(Springenberg et al. 2014) is a method specifcally designed 
for networks with ReLu activations. It is a modifed version 
of the gradient where during backpropagation only paths are 
taken into account that have positive weights and positive 
ReLu activations. Hence, it only considers positive evidence 
for a specifc prediction. While being designed for ReLu 
activations it can also be used for networks with other 
activations. 

Layer-wise Relevance Propagation (LRP) Klauschen 
et al. (2015) use backpropagation to map relevance back 
from the output layer to the input features. LRP defnes the 
relevance in the last layer as the output itself and in each 
previous layer the relevance is redistributed according to the 
weighted contribution of the neurons in the previous layer to 
the neurons in the current layer. The fnal attributions for the 
input ~x are defned as the attributions of the input layer. We 
refer to this explanation as φLRP (~x). 

Perturbation-Based Explanations Perturbation-based 
methods query the to-be-explained model on many perturbed 
inputs. They either treat the model as a black-box (Datta et al. 
2015; Ribeiro, Singh, and Guestrin 2016), need predictions 
for counterfactuals (Datta et al. 2015), or ‘smooth’ the 
explanation (Smilkov et al. 2017). They can be seen as local 
linear approximations of a model. 

https://2https://github.com/albermax/innvestigate


SmoothGrad We focus our analysis on Smooth-
Grad (Smilkov et al. 2017), which generates multiple 
samples by adding Gaussian noise to the input and releases 
the averaged gradient of these samples. Formally for some 
k ∈ N, X1 

φSMOOTH (~x) = rc(~x + N (0, σ)),
k 

k 

where N is the normal distribution and σ is a hyperparameter. 

LIME The LIME (Local Interpretable Model-agnostic Ex-
planations) method (Ribeiro, Singh, and Guestrin 2016) cre-
ates a local approximation of the model via sampling. For-
mally it solves the following optimization problem: 

φLIME(~x) = argming∈G L(g, c, π~x) + Ω(g), 

where G is a set of simple functions, which are used as 
explanations, L measures the approximation quality by g of c 
in the neighborhood of ~x (measured by π~x ) and Ω regularizes 
the complexity of g. While the LIME framework allows for 
an arbitrary local approximation in practice most commonly 
used is a linear approximation with Ridge regularization. 

2.2 Membership Inference Attacks 
We assume the attacker has gained possession of a set of 
datapoints S ⊂ Rn, and would like to know which ones are 
members of the training data. The goal of a membership in-
ference attack is to create a function that accurately predicts 
whether a point ~x ∈ S belongs to the training set of c. The 
attacker has a prior belief how many of the points in S were 
used for training. In this work we ensure that half the mem-
bers of S are members of the training set (this is known to 
the attacker), thus random guessing always has an accuracy 
of 50%, and is the threshold to beat. 

Models tend to have lower loss on members of the training 
set. Several works have exploited this fact to defne simple 
loss-based attacks (Long, Bindschaedler, and Gunter 2017; 
Sablayrolles et al. 2019; Yeom et al. 2018). The idea is to 
defne a threshold τ : an input ~x with a loss L(~x, θ) lower 
than τ is considered a member; an input with a loss higher is 
considered a non-member. � 

True if L(~x, θ) ≤ τ
MembershipLoss,τ (~x) = 

False otherwise 

Sablayrolles et al. (2019) show that this attack is optimal 
given an optimal threshold τopt, under some assumptions. 
However, this attack is infeasible when the attacker does not 
have access to the true labels or the model’s loss function. 

Hence, we propose to generalize threshold-based attacks 
to allow different sources of information. For this we use the 
notion of variance for a given vector ~v ∈ Rn: 

n nX X 
Var(~v) , (vi − µ~v)

2 where µ~v =
1 

vi 
n 

i=1 i=1 

Explicitly, we consider (i) a threshold on the prediction vari-
ance and (ii) a threshold on the explanation variance. The 
target model usually provides access to both these types of 

information. Note, however, a target model might only re-
lease the predicted label and an explanation, making only 
explanation-based attacks feasible. 

Our explanation-based threshold attacks work in a similar 
manner to other threshold-based attack models: ~y is consid-
ered a member iff Var(φ(~y)) ≤ τ . 

� 
True if Var(cθ(~x)) ≥ τ

MembershipPred,τ (~x) = 
False otherwise � 
True if Var(φ(~x)) ≤ τ

MembershipExpl,τ (~x) = 
False otherwise 

Intuitively, if the model has a very low loss then its predic-
tion vector will be dominated by the true label. These vectors 
have higher variance than vectors where the prediction is 
equally distributed among many labels (indicating model un-
certainty). This inference attack breaks in cases where the 
loss is very high because the model is decisive but wrong. 
However, as we demonstrate below, this approach offers a 
fairly accurate attack model for domains where loss-based 
attacks are effective. Hence, attacks using prediction variance 
alone still constitute a serious threat. The threshold attack 
based on explanation variance are similarly motivated. When 
the model is certain about a prediction, it is also unlikely to 
change it due to a small local perturbation. Therefore, the 
infuence and attribution of each feature are low, leading to 
a smaller explanation variance. For points closer to the de-
cision boundary, changing a feature affects the prediction 
more strongly, leading to higher explanation variance. The 
loss minimization during training “pushes” points away from 
the decision boundary. In particular, models using tanh, sig-
moid, or softmax activation functions tend to have steeper 
gradients in the areas where the output changes. Training 
points generally don’t fall into these areas.3 The crucial part 
for all threshold-based attacks is obtaining the threshold τ . 
We consider two scenarios: 
1. Optimal threshold For a given set of members and non-

members there is a threshold τopt that achieves the highest 
possible prediction accuracy for the attacker. This thresh-
old can easily be obtained when datapoint membership 
is known. Hence, rather than being an actually feasible 
attack, using τopt helps estimating the worst case privacy 
leakage. 

2. Reference/Shadow model(s) This setting assumes that 
the attacker has access to some labeled data from the 
target distribution. The attacker trains s models on that 
data and calculates the threshold for these reference (or 
shadow) models. In line with Kerckhoffs’s principle (Pe-
titcolas 2011) we assume that the attacker has access 
to the training hyper parameters and model architecture. 
This attack becomes increasingly resource intensive as s 
grows. For our experiments we choose s ∈ {1, 3}. This 

3The high variance described here results from higher absolute 
values, in fact instead of the variance an attacker could use the 1-
norm. In our experiments, there was no difference between using 
1-norm and using variance; we decided to use variance to be more 
consistent with the prediction based attacks. 



is a practically feasible attack if the attacker has access to 
similar data sources. 

3 Privacy Analysis of 
Backpropagation-Based Explanations 

In this section we describe and evaluate our membership in-
ference attack on gradient-based explanation methods. We 
use the Purchase and Texas datasets in (Nasr, Shokri, and 
Houmansadr 2018); we also test CIFAR-10 and CIFAR-100 
(Sablayrolles et al. 2019), the Adult dataset (Dua and Graff 
2017) as well as the Hospital dataset (Strack et al. 2014). The 
last two datasets are the only binary classifcation tasks con-
sidered. Where possible, we use the same training parameters 
and target architectures as the original papers (see Table 1 for 
an overview of the datasets). We study four types of informa-
tion the attacker could use: loss, prediction variance, gradient 
variance and the SmoothGrad variance. 

Table 1: Overview of the target datasets for membership 
inference 

Name Points Features Type # Classes 

Purchase 
Texas 
CIFAR-100 
CIFAR-10 
Hospital 
Adult 

197,324 
67,330 
60,000 
60,000 

101,766 
48,842 

600 
6,170 
3,072 
3,072 

127 
24 

Binary 
Binary 
Image 
Image 
Mixed 
Mixed 

100 
100 
100 

10 
2 
2 

Table 2: The average training and testing accuracies of the 
target models. 

Purchase Texas CIFAR CIFAR Hospital Adult 
-100 -10 

Train 1.00 0.98 0.97 0.93 0.64 0.85 
Test 0.75 0.52 0.29 0.53 0.61 0.85 

3.1 General setup 
For all datasets, we frst create one big dataset by merging 
the original training and test dataset, to have a large set of 
points for sampling. Then, we randomly sample four smaller 
datasets that are not overlapping. We use the smaller sets to 
train and test four target models and conduct four attacks. 
In each instance, the other three models can respectively be 
used as shadow models. We repeat this process 25 times, 
producing a total of 100 attacks for each original dataset. 
Each small dataset is split 50/50 into a training set and testing 
set. Given the small dataset, the attacker has an a priori belief 
that 50% of the points are members of the training set, which 
is the common setting for this type of attack (Shokri et al. 
2017b). 

3.2 Target datasets and architectures 
The overview of the datasets is provided in Table 1 and an 
overview of the target models accuracies in Table 2. 

Purchase dataset The dataset originated from the “Ac-
quire Valued Shoppers Challenge” on Kaggle4. The goal 
of the challenge was to use customer shopping history to 
predict shopper responses to offers and discounts. For the 
original membership inference attack, Shokri et al. (2017b) 
create a simplifed and processed dataset, which we use as 
well. Each of the 197,324 records corresponds to a customer. 
The dataset has 600 binary features representing customer 
shopping behavior. The prediction task is to assign customers 
to one of 100 given groups (the labels). This learning task 
is rather challenging, as it is a multi-class learning problem 
with a large number of labels; moreover, due to the relatively 
high dimension of the label space, allowing an attacker ac-
cess to the prediction vector — as is the case in (Shokri et al. 
2017b) — represents signifcant access to information. We 
sub-sampled smaller datasets of 20,000 points i.e. 10,000 
training and testing points for each model. We use the same 
architecture as (Nasr, Shokri, and Houmansadr 2018), namely 
a four-layer fully connected neural network with tanh activa-
tions. The layer sizes are [1024, 512, 256, 100]. We trained 
the model of 50 epochs using the Adagrad optimizer with a 
learning rate of 0.01 and a learning rate decay of 1e-7. 

Texas hospital stays The Texas Department of State 
Health Services released hospital discharge data public use 
fles spanning from 2006 to 2009.5 The data is about inpa-
tient status at various health facilities. There are four different 
groups of attributes in each record: general information (e.g., 
hospital id, length of stay, gender, age, race), the diagnosis, 
the procedures the patient underwent, and the external causes 
of injury. The goal of the classifcation model is to predict 
the patient’s primary procedures based on the remaining at-
tributes (excluding the secondary procedures). The dataset 
is fltered to include only the 100 most common procedures. 
The features are transformed to be binary resulting in 6,170 
features and 67,330 records. We sub-sampled smaller datasets 
of 20,000 points i.e. 10,000 training and testing points for 
each model. As the dataset has only 67,330 points we allowed 
resampling of points. We use the same architecture as (Nasr, 
Shokri, and Houmansadr 2018), namely a fve-layer fully 
connected neural network with tanh activations. The layer 
sizes are [2048, 1024, 512, 256, 100]. We trained the model 
of 50 epochs using the Adagrad optimizer with a learning 
rate of 0.01 and a learning rate decay of 1e-7. 

CIFAR-10 and CIFAR-100 CIFAR-10 and CIFAR-100 
are well-known benchmark datasets for image classifcation 
(Krizhevsky and Hinton 2009). They consists of 10 (100) 
classes of 32 × 32 × 3 color images, with 6,000 (600) images 
per class. The datasets are usually split in 50,000 training and 
10,000 test images. For CIFAR-10, we use a small convolu-
tional network with the same architecture as in (Shokri et al. 
2017b; Sablayrolles et al. 2019), it has two convolutional 
layers with max-pooling, and two dense layers, all with Tanh 
activations. We train the model for 50 epochs with a learn-

4https://www.kaggle.com/c/acquire-valued-shoppers-
challenge/data 

5https://www.dshs.texas.gov/THCIC/Hospitals/Download. 
shtm 

https://5https://www.dshs.texas.gov/THCIC/Hospitals/Download
https://4https://www.kaggle.com/c/acquire-valued-shoppers


ing rate of 0.001 and the Adam optimizer. Each dataset has 
30,000 points (i.e. 15,000 for training). Hence, we only have 
enough points to train one shadow model per target model. 
For CIFAR-100, we use a version of Alexnet (Krizhevsky, 
Sutskever, and Hinton 2012), it has fve convolutional layers 
with max-pooling, and to dense layers, all with ReLu activa-
tions. We train the model for 100 epochs with a learning rate 
of 0.0001 and the Adam optimizer. Each dataset has 60,000 
points (i.e. 30,000 for training). Hence, we don’t have enough 
points to train shadow models. However, with a smaller train-
ing set, there would be too few points of each class to allow 
for training. 

UCI Adult (Census income) This dataset is extracted 
from the 1994 US Census database (Dua and Graff 2017). It 
contains 48,842 datapoints. It is based on 14 features (e.g., 
age, workclass, education). The goal is to predict if the yearly 
income of a person is above 50,000 $. We transform the cat-
egorical features into binary form resulting in 104 features. 
We sub-sampled smaller datasets of 5,000 points i.e. 2,500 
training and testing points for each model. For the architec-
ture, we use a fve-layer fully-connected neural network with 
Tanh activations. The layer sizes are [20, 20, 20, 20, 2]. We 
trained the model of 20 epochs using the Adagrad optimizer 
with a learning rate of 0.001 and a learning rate decay of 
1e-7. 

Diabetic Hospital The dataset contains data on diabetic pa-
tients from 130 US hospitals and integrated delivery networks 
(Strack et al. 2014). We use the modifed version described 
in (Koh and Liang 2017) where each patient has 127 features 
which are demographic (e.g. gender, race, age), administra-
tive (e.g., length of stay), and medical (e.g., test results); the 
prediction task is readmission within 30 days (binary). The 
dataset contains 101,766 records from which we sub-sample 
balanced (equal numbers of patients from each class) datasets 
of size 10,000. Since the original dataset is heavily biased to-
wards one class, we don’t have enough points to train shadow 
models. As architecture, we use a four-layer fully connected 
neural network with Tanh activations. The layer sizes are 
[1024, 512, 256, 100]. We trained the model for 1,000 epochs 
using the Adagrad optimizer with a learning rate of 0.001 
and a learning rate decay of 1e-6. 

3.3 Evaluation of main experiment 
Explanation-based attacks As can be seen in Figure 1, 
gradient-based attacks (as well as other backpropagation-
based methods, as further discussed in Section 3.5) on the 
Purchase and Texas datasets were successful. This result is 
a clear proof of concept, that model explanations are ex-
ploitable for membership inference. However, the attacks 
were ineffective for the image datasets; gradient variance 
fuctuates wildly between individual images, making it chal-
lenging to infer membership based on explanation variance. 

Loss-based and predictions-based attacks When loss-
based attacks are successful, attacks using prediction variance 
are nearly as successful. These results demonstrate that it is 
not essential to assume that the attacker knows the true label 
of the point of interest. 

Types of datasets The dataset type (and model archi-
tecture) greatly infuences attack success. For both binary 
datasets (Texas and Purchase), all sources of information 
pose a threat. On the other hand, for the very low dimensional 
Hospital and Adult datasets, none of the attacks outperform 
random guessing. This lack of performance may be because 
the target models do not overft to the training data (see Ta-
ble 2), which generally limits its vulnerability to adversarial 
attacks (Yeom et al. 2018). 

Optimal threshold vs. shadow models Shadow model-
based attacks compare well to the optimal attack, with at-
tacks based on three shadow models performing nearly at an 
optimal level; this is in line with results for loss-based attacks 
(Sablayrolles et al. 2019). 

Considering the entire explanation vector In the attacks 
above, we used only the variance of the explanations. Intu-
itively, when the model is certain about a prediction because 
it is for a training point, it is unlikely to change the prediction 
with small local perturbation. Hence, the infuence (and at-
tribution) of each feature is low. It has a smaller explanation 
variance. For points closer to the decision boundary, changing 
a feature affects the prediction more strongly. The variance 
of the explanation for those points should be higher. The 
loss minimization during training tries to “push” points away 
from the decision boundary. Especially, models using tanh, 
sigmoid, or softmax activations have steep gradients in the 
areas where the output changes. Training points generally 
don’t fall into these areas.6 Hence, explanation variance is 
a suffcient parameter for deploying a successful attack. To 
further validate this claim, we conduct an alternative attack 
using the entire explanation vector as input. 

The fundamental idea is to cast membership inference as 
a learning problem: the attacker trains an attack model that, 
given the output of a target model can predict whether or 
not the point ~x was used during the training phase of c. The 
main drawback of this approach is that it assumes that the 
attacker has partial knowledge of the initial training set to 
train the attack model. Shokri et al. (2017b) circumvent this 
by training shadow models (models that mimic the behavior 
of c on the data) and demonstrate that comparable results are 
obtainable even when the attacker does not have access to 
parts of the initial training set. As we compare the results 
to the optimal threshold, it is appropriate to compare with a 
model that is trained using parts of the actual dataset. This 
setting allows for a stronger attack. 

The specifc attack architecture, we use in this section, 
is a neural network inspired by the architecture of Shokri 
et al. (2017b). The network has fully connected layers of 
sizes [r, 1024, 512, 64, 256, 64, 1], where r is the dimension 
of the respective explanation vector. We use ReLu activations 
between layers and initialize weights in a manner similar to 

6The high variance described here results from higher absolute 
values. Instead of the variance, an attacker could use the 1-norm. In 
our experiments, there was no difference between using 1-norm and 
using the variance. We decided to use variance to be more consistent 
with the attacks based on the prediction threshold. 
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Figure 1: Results for the threshold-based attacks using different attack information sources. The OPTIMAL attack uses the 
optimal threshold; the SHADOW trains a shadow model on data from the same distribution, and uses an optimal threshold for the 
shadow model. Using three such models results in nearly optimal attack accuracy. 
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Figure 2: A comparison between attacks using only the vari-
ance of the gradient and attacks using the entire gradient 
explanation as input. 

Shokri et al. (2017b) to ensure a valid comparison between 
the methods. We trained the attack model for 15 epochs using 
the Adagrad optimizer with a learning rate 0.01 of and a 
learning rate decay of 1e-7. As data for the attacker, we used 
20,000 explanations generated by the target 10,000 each for 
members and non-members. The training testing split for the 
attacker was 0.7 to 0.3. We repeated the experiment 10 times. 
We omitted CIFAR-100 for computational reasons. 

As can be seen in Figure 2, attacks based on the entire 
explanation perform slightly better than attacks based only 
on the variance. However, they are qualitatively the same and 
still perform very poorly for CIFAR-10, Adult, and Hospital. 

3.4 Combining different information sources 
The learning attacks described in the previous paragraph al-
low for a combination of different information sources. For 
example, an attacker can train an attack network using both 
the prediction and the explanation as input. Experiments on 
combining the three information sources (explanation, predic-
tion, and loss) lead to outcomes identical to the strongest used 
information source. Especially if the loss is available to an 
attacker, we could not fnd evidence that either the prediction 

Figure 3: Results for the threshold-based attacks using differ-
ent backpropagation-based explanations as sources of infor-
mation for the attacker. 

vector or an explanation reveals additional information. 

3.5 Results for other backpropagation-based 
explanations 

Besides the gradient, several other explanation methods based 
on backpropagation have been proposed. We conducted the 
attack described in Section 2.2 replacing the gradient with 
some other popular of these explanation methods. The tech-
niques are all implemented in the INNVESTIGATE library7 

(Alber et al. 2018). An in-depth discussion of some of these 
measures, and the relations between them, can also be found 
in (Ancona et al. 2018). As can be seen in Figure 3 on the 
Purchase, Texas, and CIFAR-10 datasets, the results for other 
backpropagation based methods are relatively similar to the 
attack based on the gradient. Integrated gradients performing 
most similar to the gradient. For Adult, Hospital and CIFAR-
100 small-scale experiments indicated that this type of attack 
would not be successful for these explanations as well, we 
omitted the datasets from further analysis. 

7https://github.com/albermax/innvestigate 

https://7https://github.com/albermax/innvestigate


4 Analysis of factors of information leakage 
In this section, we provide further going analysis to validate 
our hypothesis and broaden understanding. 

4.1 The Infuence of the Input Dimension 
The experiments in Section 3 indicate that V ar(rc(~x)), and 
||rc(~x)||1 predict training set membership. In other words, 
high absolute gradient values at a point ~x signal that ~x is not 
part of the training data: the classifer is uncertain about the 
label of ~x, paving the way towards a potential attack. Let 
us next study this phenomenon on synthetic datasets, and 
the extent to which an adversary can exploit model gradient 
information in order to conduct membership inference attacks. 
The use of artifcially generated datasets offers us control over 
the problem complexity, and helps identify important facets 
of information leaks. 

To generate datasets, we use the Sklearn python library.8 

For n features, the function creates an n-dimensional hyper-
cube, picks a vertex from the hypercube as center of each 
class, and samples points normally distributed around the 
centers. In our experiments, the number of classes is either 2 
or 100 while the number of features is between 1 to 10,000 
in the following steps, 

n ∈ {1, 2, 5, 10, 14, 20, 50, 100, 127, 200, 500, 600, 
1000, 2000, 3072, 5000, 6000, 10000}. 

For each experiment, we sample 20,000 points and split them 
evenly into training and test set. We train a fully connected 
neural network with two hidden layers with ffty nodes each, 
the tanh activation function between the layers, and softmax 
as the fnal activation. The network is trained using Adagrad 
with learning rate of 0.01 and learning rate decay of 1e − 7 
for 100 epochs. 

Increasing the number of features does not increase the 
complexity of the learning problem as long as the number of 
classes is fxed. However, the dimensionality of the hyper-
plane increases, making its description more complex. Fur-
thermore, for a fxed sample size, the dataset becomes in-
creasingly sparse, potentially increasing the number of points 
close to a decision boundary. Increasing the number of classes 
increases the complexity of the learning problem. 

Figure 4 shows the correlation between ||rc(~x)||1 and 
training membership. For datasets with a small number of fea-
tures (≤ 102) there is almost no correlation. This corresponds 
to the failure of the attack for Adult and the Hospital dataset. 
When the number of features is in the range (103 ∼ 104) 
there is a correlation, which starts to decrease when the data 
dimension is further increased. The number of classes seems 
to play only a minor role; however, a closer look at training 
and test accuracy reveals that the actual behavior is quite 
different. For two classes and a small number of features 
training and testing accuracy are both high (almost 100%), 
around n = 102 the testing accuracy starts to drop (the model 
overfts) and at n = 103 the training accuracy starts to drop 
as well reducing the overftting. For 100 classes the testing 

8the make_classification function https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.make\ 
_classifcation.html 
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Figure 4: The correlation between ||rc(~x)||1 and training mem-
bership for synthetic datasets for increasing number of features n 
and different number of classes k ∈ {2, 100} 

accuracy is always low and only between 103 ≤ n ≤ 104 

the training accuracy is high, leading to overftting, just on 
a lower level. We also conduct experiments with networks 
of smaller/larger capacity, which have qualitatively similar 
behavior. However, the interval of n in which correlation 
exists and the amount of correlation varies (see Figure 7 in 
Appendix A). 

4.2 Using individual thresholds 
Sablayrolles et al. (2019) proposed an attack where the at-
tacker obtains a specifc threshold for each point (instead 
of one per model). However, to be able to obtain such a 
threshold, the attacker would need to train shadow models 
including the point of interest. This situation would require 
knowledge of the true label of the point. This conficts with 
the assumption that when using explanations (or predictions) 
for the attack the attacker does not have access to these true 
labels. Furthermore, Sablayrolles et al. (2019) results suggest 
that this attack only very mildly improves performance. 

4.3 Infuence of overftting 
Yeom et al. (2018) show that overftting signifcantly infu-
ences the accuracy of membership inference attacks. To test 
the effect of overftting, we vary the number of iterations of 
training achieving different accuracies. In line with previous 
fndings for loss-based attacks, our threshold-based attacks 
using explanations and predictions work better on overftted 
models; see Figure 5. 

5 Privacy Analysis of Perturbation-Based 
Explanations 

Neither the threshold-based attacks described in Section 2.2 
nor the learning-based attacks in Section 3.3 outperform 
random guessing when given access to the SmoothGrad 
(Smilkov et al. 2017). Given that SmoothGrad is using sam-
pling rather than a few backpropagations, it is inherently 
different from the other explanations we considered so far. 
We discuss the differences in this section. 

https://learn.org/stable/modules/generated/sklearn.datasets.make
https://scikit
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5.1 Attacks using LIME explanation 
As a second perturbation-based method, we looked at the pop-
ular explanation method LIME (Singh, Ribeiro, and Guestrin 
2016). The type of attack is the same as described in Sec-
tion 2.2. We use an optimal threshold based on the variance of 
the explanation. However, the calculation of LIME explana-
tions takes considerably longer than the computation of other 
methods we considered. Every single instance computes for 
a few seconds. Running experiments with 10,000 or more 
explanations would take weeks to months. To save time and 
energy, we restricted the analysis of the information-leakage 
of LIME to smaller-scale experiments where the models train 
on 1,000 points, and the attacks run on 2,000 points each 
(1,000 members and 1,000 non-members). We also repeated 
each experiment only 20 times instead of 100 as for the others. 
Furthermore, given that the experiments for the other expla-
nations indicated that only for Purchase and Texas the attack 
was likely to be successful, we restricted our experiments 
to these two datasets. Figure 6 shows the results for these 
attacks. To ensure that it is not the different setting that deter-
mines the outcome, we also rerun the attacks for the gradient 
and SmoothGrad explanations, as well as the attack using 
the prediction variance in this new setting. Neither LIME 
nor SmoothGrad outperforms random guessing. For the Pur-
chase dataset, however, the attack using the gradient variance 
fails as well. As a fnal interesting observation, which we 
are unable to explain at the moment: For the Texas dataset, 
the gradient-based attack performs better than on the larger 
dataset (shown in Figure 1) it even outperforms the attack 
based on the prediction in this specifc setting. Something we 
want to explore further in future works. 

5.2 Analysis 
While it is entirely possible that perturbation-based meth-
ods are vulnerable to membership inference, we conjecture 
that this is not the case. This conjecture is due to an inter-
esting connection between perturbation-based model expla-
nations and the data-manifold hypothesis (Fefferman and 
Mitter 2016). The data-manifold hypothesis states that “data 
tend to lie near a low dimensional manifold” (Fefferman and 
Mitter 2016, p. 984). Many works support this hypothesis 
(Belkin and Niyogi 2003; Brand 2003; Narayanan and Mitter 
2010), and use it to explain the pervasiveness of adversarial 
examples (Gilmer et al. 2018). To the best of our knowledge, 

Figure 6: Attacks using LIMEor SmoothGrad do not outper-
form random guessing in any of our experiments. 

little is known on how models generally perform outside of 
the data manifold. In fact, it is not even clear how one would 
measure performance of a model on points outside of the 
training data distribution: they do not have any natural labels. 
Research on creating more robust models aims at decreas-
ing model sensitivity to small perturbations, including those 
yielding points outside of the manifold. However, robust-
ness results in vulnerability to membership inference (Song, 
Shokri, and Mittal 2019). Perturbation-based explanation 
methods have been criticized for not following the distribu-
tion of the training data and violating the manifold hypothesis 
(Kumar et al. 2020; Sundararajan and Najmi 2019). Slack 
et al. (2020) demonstrate how a malicious actor can differ-
entiate normal queries to a model from queries generated 
by LIME and QII, and so make a biased model appear fair 
during an audit. Indeed, the resilience of perturbation-based 
explanations to membership inference attacks may very well 
stem from the fact that query points that the model is not 
trained over, and for which model behavior is completely un-
specifed. One can argue that the fact that these explanations 
do not convey membership information is a major faw of this 
type of explanations. Given that the results in the previous 
section indicate that for many training points the model heav-
ily overfts — to the extent that it effectively “memorizes” 
labels — an explanation should refect that. 

6 Broader Impact 
AI governance frameworks call for transparency and privacy 
for machine learning systems.9 Our work investigates the 
potential negative impact of explaining machine learning 
models, in particular, it shows that offering model expla-
nations may come at the cost of user privacy. The demand 
for automated model explanations led to the emergence of 
model explanation suites and startups. However, none of the 
currently offered model explanation technologies offer any 
provable privacy guarantees. This work has, to an extent, 
arisen from discussion with colleagues in industry and AI 

9See, for example, the white paper by the European Commis-
sion on Artifcial Intelligence – A European approach to excel-
lence and trust: https://ec.europa.eu/info/sites/info/fles/commission-
white-paper-artifcial-intelligence-feb2020_en.pdf 

https://ec.europa.eu/info/sites/info/files/commission


governance; both expressed a great deal of interest in the po-
tential impact of our work on the ongoing debate over model 
explainability and its potential effects on user privacy. 

One of the more immediate risks is that a real-world mali-
cious entity uses our work as the stepping stone towards an 
attack on a deployed ML system. While our work is still pre-
liminary, this is certainly a potential risk. Granted, our work 
is still at the proof-of-concept level, and several practical hur-
dles must be overcome in order to make it into a fully-fedged 
deployed model, but nevertheless the risk exists. In addition, 
to the best of our knowledge, model explanation toolkits have 
not been applied commercially on high-stakes data. Once 
such explanation systems are deployed on high-stakes data 
(e.g., for explaining patient health records or fnancial trans-
actions), a formal exploration of their privacy risks (as is 
offered in this work) is necessary. 

Another potential impact — which is, in the authors’ opin-
ion, more important — is that our work raises the question 
whether there is an inevitable confict between explaining 
ML models — the celebrated “right to explanation” — and 
preserving user privacy. This tradeoff needs to be communi-
cated beyond the ML research community, to legal scholars 
and policymakers. Furthermore, some results on example-
based explanations suggest that the explainability/privacy 
confict might disparately impact minority groups: their data 
is either likelier to be revealed, else they will receive low 
quality explanations. We do not wish to make a moral stand 
in this work: explainability, privacy and fairness are all noble 
goals that we should aspire to achieve. Ultimately, it is our 
responsibility to explain the capabilities — and limitations 
— of technologies for maintaining a fair and transparent AI 
ecosystem to those who design policies that govern them, 
and to various stakeholders. Indeed, this research paper is 
part of a greater research agenda on transparency and privacy 
in AI, and the authors have initiated several discussions with 
researchers working on AI governance. The tradeoff between 
privacy and explainability is not new to the legal landscape 
(Banisar 2011); we are in fact optimistic about fnding model 
explanation methods that do not violate user privacy, though 
this will likely come at a cost to explanation quality. 

Finally, we hope that this work sheds further light on what 
constitutes a good model explanation. The recent wave of 
research on model explanations has been recently criticized 
for lacking a focus on actual usability (Kaur et al. 2020), and 
for being far from what humans would consider helpful. It is 
challenging to mathematically capture human perceptions of 
explanation quality. However, our privacy perspective does 
shed some light on when explanations are not useful: expla-
nations that offer no information on the model are likely to 
be less human usable (note that from our privacy perspective, 
we do not want private user information to be revealed, but 
revealing some model information is acceptable). 

7 Related Work and Conclusions 
Milli et al. (2019) show that gradient-based explanations can 
be used to reconstruct the underlying model; in recent work, 
a similar reconstruction is demonstrated based on counter-
factual explanations (Aïvodji, Bolot, and Gambs 2020) this 

serves as additional evidence of the vulnerability of trans-
parency reports. However, copying the behavior of a model 
is different from the inference of its training data. While the 
former is unavoidable, as long the model is accessible, the 
latter is more likely an undesired side effect of current meth-
ods. There exists some work on the defense against privacy 
leakage in advanced machine learning models. Abadi et al. 
(2016) and Papernot et al. (2018) have designed frameworks 
for differentially private training of deep learning models, 
and Nasr, Shokri, and Houmansadr (2018) proposes adver-
sarial regularization. However, training accurate and privacy-
preserving models is still a challenging research problem. 
Besides, the effect of these techniques (notably the random-
ness they induce) on model transparency is unknown. Finally, 
designing safe transparency reports is an important research 
direction: one needs to release explanations that are both safe 
and formally useful. For example, releasing no explanation 
(or random noise) is guaranteed to be safe, but is not useful; 
example-based methods are useful but cannot be considered 
safe. Quantifying the quality/privacy trade-off in model ex-
planations will help us understand the capacity to which one 
can explain model decisions while maintaining data integrity. 
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A The Infuence of the Input Dimension 
In Figure 7 we report experiments on the infuence of the 
input dimension with networks of smaller/larger capacity, 
which have qualitatively similar behavior to our baseline 
model. However, the interval of n in which correlation exists 
and the amount of correlation varies. 
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Figure 7: The correlation between ||rc(~x)||1 and training mem-
bership for synthetic datasets for increasing number of features n 
and different number of classes k ∈ {2, 100} for three different 
networks. The "Small" has one hidden layer with 5 nodes, "Base" 
has two layers with 50 nodes each, "Big" has 3 layers with 100 
nodes each. 

B Example-Based Explanations 
To illustrate the privacy risk of example-based model explana-
tions, we focus on the approach proposed by Koh and Liang 
(2017). It aims at identifying infuential datapoints; that is, 
given a point of interest ~y, fnd a subset of points from the 
training data φ(~y) ⊆ X that explains the label cˆ(y~), where θ 

θ̂  is a parameterization induced by a training algorithm A. It 
selects a training point ~xtrain by measuring the importance of 
~xtrain for determining the prediction for ~y. 
To estimate the effect of ~xtrain on ~y, the explanation measures 
the difference in the loss function over ~y when the model is 
trained with and without ~xtrain. Let θ~ , A(X \{~xtrain}) ,xtrain 

in words, θ~ is induced by training algorithm A given thextrain 

dataset excluding ~xtrain. The infuence of ~xtrain on ~y is then 

I~y (~xtrain) , L(~y, θ~ ) − L(~y, θ̂). (2)xtrain 

The Koh and Liang explanation releases the k points with the 
highest absolute infuence value according to Equation (2). 
Additionally, it might release the infuence of these k points 
(the values of I~y(~z) as per Equation (2)), which allows users 
to gauge their relative importance. 

C Membership-inference via Example-Based 
Model Explanations 

In this section we analyze how many training points an at-
tacker can recover with access to example-based explanations. 
We focus on logistic regression models, for which example-
based explanations were originally used (Koh and Liang 
2017). The results can be generalized to neural networks by 
focusing only on the last layer, we demonstrate this by con-
sidering a binary image classifcation dataset used in (Koh 
and Liang 2017); we call this dataset Dog/Fish. We also fo-
cus only on binary classifcation tasks. While technically the 
approaches discussed in previous sections could be applied 
to this setting as well, example-based explanations allow for 
stronger attacks. Specifcally, they explicitly reveal training 
points, and so offer the attacker certainty about a points’ train-
ing set membership (i.e. no false positives). Formally, we say 
a point ~y reveals point ~x if for all z ∈ X , |Iy~(~x)| ≥ |Iy~(~z)|. 
In other words, ~x will be offered if one requests a example-
based explanation for ~y. Similarly, ~y k-reveals point ~x if 
there is a subset S ⊆ X , |S| = k − 1 such that ∀z ∈ X\S : 
|Iy~(~x)| ≥ |Iy~(~z)|. Hence, ~x will be one of the points used 
to explain the prediction of ~y if one releases the top k most 
infuential points. A point ~x ∈ X that (k-)reveals itself, is 
called (k-)self-revealing. 

Revealing membership for example-based explanations 
While for feature-based explanations the attacker needs to 
rely on indirect information leakage to infer membership, for 
example-based explanations, the attacker’s task is relatively 
simple. Intuitively, a training point should be infuential for its 
own prediction, so an example-based explanation of a training 
set member is likely to contain the queried point, revealing 
membership. We test this hypothesis via experiments, i.e. 
for every point ~x ∈ X in the training set we obtain the 
k ∈ {1, 5, 10} most infuential points for the prediction fθ(~x) 
and see if ~x is one of them. 

C.1 Experimental setup 
While the theoretical framework of infuence functions de-
scribed in Section 2 can be applied to an arbitrary classif-
cation task, it requires the training of as many classifers as 
there are points in the training set in practice. Koh and Liang 
(2017) propose an approximation method, but currently we 
only have access of its implementation for binary logistic 
regression models. However, for logistic regression, retrain-
ing the model (i.e. computing an exact solution) is actually 
faster than running the approximation algorithm. For larger 
models and datasets, these explanation methods seems in-
tractable at the moment. This limits our experiments to the 
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Adult and Hospital datasets from our previous experiments 
for which we train binary logistic regression models. Fur-
thermore, given the relatively long time it takes to compute 
all models, we reduce the size of the training set to 2,000 
points, so we can run one experiment within a few hours (see 
Figure 9 for an exploration of the effect of dataset size). Koh 
and Liang (2017) use a specifcally created dataset containing 
2400 299 × 299-pixel dog and fsh images, extracted from 
ImageNet (Russakovsky et al. 2015). The images were pre-
processed by taking the output of the penultimate layer of 
a neural network trained on ImageNet.10 These latent repre-
sentations were then used to train a linear regression model. 
For more variety we include this dataset here as the Dog/Fish 
dataset. Arguably, this dataset doesn’t contain particularly pri-
vate information, but it can be seen as representative of image 
data in general. It also allows us to attack a pre-trained deep 
neural network which last layer was fne tuned. This type of 
transfer learning for small dataset becomes increasingly pop-
ular. Given the small size of this dataset we randomly split 
it into 1800 training and 600 test points for each experiment. 
For each dataset we repeat the experiment 10 times. 

C.2 Evaluation 
Figure 8 shows the percentage of training points that would 
be revealed by explaining themselves. For the standard set-

10Specifcally, the authors used an Inceptionv3 architecture, for 
which pre-trained models are available for Keras https://keras.io/ 
applications/\#inceptionv3. 
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ting where the top 5 most infuential points are revealed, a 
quarter of each dataset is revealed on average. For the Hospi-
tal dataset, two thirds of training points are revealed. Even 
when just the most infuential point would be released for the 
Adult dataset (which exhibits the lowest success rates), 10% 
of the members are revealed through this simple test. 

As mentioned in Appendix B, the infuence score of the 
most infuential points might be released to a user as well. 
In our experiments, the infuence scores are similarly dis-
tributed between training and test points (i.e. members and 
non-members); however, the distribution is signifcantly dif-
ferent once we ignore the revealed training points. Figure 10 
illustrates this for one instance of the Dog/Fish dataset; simi-
lar results hold for the other datasets. An attacker can exploit 
these differences, using techniques similar to those discussed 
in Section 2.2; however, we focus on other attack models in 
this work. 

C.3 Minority and outlier vulnerability to 
inference attacks for example-based 
explanations 

Visual inspection of datapoints for which membership attacks 
were successful indicates that outliers and minorities are 
more susceptible to being part of the explanation. Images 
of animals (a bear, a bird, a beaver) eating fsh (and labeled 
as such) were consistently revealed (as well as a picture 
containing a fsh as well as a (more prominent) dog that was 
labeled as fsh). We label three “minorities” in the dataset to 
test the hypothesis that pictures of minorities are likelier to 
be revealed (Table 3a). 

With the exception of k = 1 (for lion and clown fsh), 
minorities are likelier to be revealed. While clownfsh (which 
are fairly “standard” fsh apart from their distinct coloration) 
exhibit minor differences from the general dataset, birds are 
more than three times as likely to be revealed. The Hospital 
dataset exhibits similar trends (Table 3b). Young children, 
which are a small minority in the dataset, are revealed to a 
greater degree; ethnic minorities also exhibit slightly higher 
rates than Caucasians. This is mirrored (Table 3c) for the 
Adult dataset, with the exception of the age feature and the 
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#points k = 1 k = 5 k = 10 

Whole dataset 100% 16% 24% 28% 
Birds 0.6% 64% 84% 86% 
Clownfsh 1% 14% 30% 33% 
Lion fsh 1% 9% 31% 43% 

(a) Disclosure likelihood by type in the Dog/Fish dataset. 

% of data k = 1 k = 5 k = 10 

Whole dataset 100% 33% 63% 75% 
Age 0 -10 0.2% 61% 100% 100% 
Age 10 -20 0.7% 23% 62% 95% 
Caucasian 75% 32% 62% 74% 
African Amer. 19% 36% 66% 78% 
Hispanics 2% 40% 61% 77% 
Other race 1.5% 30% 60% 79% 
Asian Amer. 0.6% 33% 70% 95% 

(b) Disclosure likelihood by age and race in the Hospital dataset. 

% of data k = 1 k = 5 k = 10 

Whole dataset 100% 10% 21% 28% 
Age 10 -20 5% 0% 1% 1% 
White 86% 10% 21% 28% 
Black 10% 9% 16% 19% 
A.-I.-E. 1% 8% 23% 32% 
Other 0.8% 16% 32% 43% 
A.-P.-I. 3.% 21% 40% 48% 

(c) Disclosure likelihood by age and race in the Adult dataset (A.-I.-
E.: Amer-Indian-Eskimo; A.-P.-I.:Asian-Pac-Islander ). 

Table 3: Minority populations are more vulnerable to being revealed 
by the Koh and Liang method. 

“Black” minority. Young people are actually particularly safe 
from inference. Note however, that young age is a highly 
predictive attribute for this classifcation. Only 3 out of the 
2,510 entries aged younger than 20 have an income of more 
than 50K and none of them made it in any of our training 
set. Similarly only 12% of the Black people in the dataset 
(vs. 25% over all) have a positive label, making this attribute 
more predictive an easier to generalize. 

While our fndings are preliminary, they are quite trou-
bling in the authors’ opinion: transparency reports aim, in 
part, to protect minorities from algorithmic bias; however, 
data minorities are exposed to privacy risks through their 
implementation. Our fndings can be explained by earlier ob-
servations that training set outliers are likelier to be “memo-
rized” and thus less generalized (Carlini et al. 2018); however, 
such memorization leaves minority populations vulnerable 
to privacy risks. 

D Theoretical Analysis For Dataset 
Reconstruction 

Let us now turn our attention to a stronger type of attack; 
rather than inferring the membership of specifc datapoints, 
we try to recover the training dataset. 

Given a parameter θ = ( ~w, b) ∈ Rn × R a logistic regres-
sion model is defned as 

1 
fθ(~x) = . −w~ T ~x+b1 + e 

For a point ~y ∈ Rn with label l(~y) ∈ {0, 1} we defne the 
loss of f(~y)θ as 

z)(fθ(~ z)L(~ y))l(~ ,y, θ) = (1 − fθ(~ y))1−l(~ 

which corresponds to the standard maximal likelihood for-
mulation. As logistic regression does not allow for a closed 
form optimum, it is generally trained via gradient ascent. We 
assume we are given a fxed training regime A (i.e. fxed 
parameters for number of steps, learning rate etc.). 

Let fθ be the model induced by X and 
FX = {fθ~ |fθ~ is induced by X \{~x}, ~x ∈ X} 

x x 

be the set of functions induced by omitting the training points. 
We can reformulate the infuence of point ~x on point ~y (as-
suming l(~y) = 0) as 

I~y (~x) = L(y, θ) − L(y, θ~x) 

(y)= fθ(y) − fθ~x 

1 1 
= − −w~ y~+b −w~ ~y+b~x1 + e T 

1 + e 
T 
~x 

The condition that ~y reveals ~x is thus equivalent to ensuring 
that for all ~z ∈ X , |Iy~(~x)| ≥ |Iy~(~z)|. In the case of linear 
regression this simply implies that 

1 1 | − |−w~ T y~+b −w~ y~+b~x1 + e 1 + e ~
T 
x 

1 1 ≥ | − |−w~ y~+b −w~ ~y+b~z1 + e T 
1 + e ~

T 
z 

which can be simplifed to a linear constraint (whose exact 
form depends on whether the terms in absolute values are 
positive or negative). 



Figure 11: Illustrations of datasets for which only two (left) or all 
(right) points can be revealed under standard training procedures. 

D.1 Bounds on number of revealable points 
It is relatively easy to construct examples in which only two 
points in the dataset can be revealed (see Figure 11). In fact, 
there are specifc instances in which only a single datapoint 
can be revealed (see Lemma D.1), however these cases are 
neither particularly insightful nor do they refect real-world 
settings. On the other side, there exists datasets where, in-
dependent of the number of features, the entire dataset can 
be recovered. The right side of Figure 11 illustrates such an 
example. 

The following Lemma characterizes the situations in which 
only a single point of the dataset can be revealed for X ⊆ R. 
The conditions for higher dimensions follow from this. 

Lemma D.1. Given a training set X let fθ and FX be in-
duced by X with |FX | ≥ 2, then one of the following state-
ments is true 

1. ∀~x ∈ X : w = w~x and (b ≥ b~x, ∀x ∈ X )∨(b ≤ b~x, ∀x ∈ 
X ) (i.e all functions in FX are shifted in one direction of 
fθ), 

2. ∃~y ∈ Rn : ∀~x ∈ X : w~x ~y +b~x = w~y +b (i.e all functions 
in FX intersect with fθ in the same point) , 

3. ∀~x ∈ X : w = w~x and there exists a numbering of the 
points in X such that b1 ≤ b2 ≤ · · · ≤ bk ≤ b ≤ 

b1bk+1, . . . , bm such that b ≤ log( 1 (e + ebm ).2 

4. at least two points can be revealed. 

Proof. It is easy to see that in the frst two situations only one 
point can be revealed (the one corresponding to the largest 
shift or largest angle at intersection). In the third case all func-
tions in FX are shifts of fθ, but not all in the same direction. 
Only, the left most and right most shift are candidates for 
being revealed as they clearly dominate all other shifts. Also 
we assume b1 < b < bm (as soon as one shift coincidences 
with the original model the statement is trivially true). Some 
calculus reveals the condition for which the two points would 
have the same infuence is � 

b �
b1 bm−2e + e + e 

y = ln /w 
eb+b1 + eb+bm − 2eb1 +bm 

, which is well defned when the expression inside the loga-
b+b1 b+bm b1+bmrithm is positive and e + e − 2e 6= 0. The for-

b1mer is the case for b < log( 1 (e + eb2 ), which also ensures 2 
the latter condition. On the other hand if b ≤ log( 1 (eb1 +ebm )2 
the equation has no solution and so only one point can be 
revealed. 

It remains to show that in all other cases at least two points 
can be revealed. Let’s assume that there is a single ~x ∈ 

T TX : w~ =6 w~ ~x. In this case w ~y + b~x = w ~y + b can be ~x 
solved and at the solutions I(~x) = 0 yet all other points have 
nonzero infuence and one of them is revealed. Yet, since 

T T 0 0w 0 y~ + b~x − w ~y + b is constant for all ~x ∈ X , ~x 6= ~x ~x 
T Tand |w ~y + b~x − w ~y + b| can take arbitrary values, there ~x 

exists ~y ∈ Rn such that ~x = argmax~z∈X |I~y (~z)|. Finally, if 
there are multiple points with ~x ∈ X : w~ 6= w~ ~x none of them 
can be revealed for all ~y as long as the condition in 2) is not 
satisfed. 

The following result states that there exist models and 
datasets for which every point can be revealed. 
Lemma D.2. For every m ∈ N there exists a dataset X ⊂ 
Rn with |X | = m and a training procedure A so that any 
point in X can be revealed by example-based explanations. 

Proof. Given that we do not have restrictions on our training 
procedure A the claim is equivalent to the existence of a 
parameter θ and a series of parameters θk and points yk such 
that ∀k, m ∈ N : 

|L(~yk, θ) − L(~yk, θk)| = max |L(~yk, θ) − L(~yk, θi)|
i∈[m] 

W.l.o.g. n = 1, let w = b = 0 and ∀k : l(yk) = 0, then 

|L(~yk, θ) − L(~yk, θk)| = max |L(~yk, θ) − L(~yk, θi)|
i∈[m] 

⇔L(~yk, θk) = max |L(~yk, θ) − L(y~ k, θi) 
i∈[m] 

⇔fθk (y~ k) = max fθi (~yk) ⇔ wkyk − bk = max wiyk − bi 
i∈[m] i∈[m] 

The above condition is satisfed for wk = 2k , yk = k and 
bk = k2, as this describes the series of tangents of the strictly 
convex x2 function. 

Algorithm to recover the training set by minimizing the 
infuence of already discovered points We construct a 
practical algorithm with which the attacker can iteratively 
reveal new points. Algorithm 1 consists of two main steps 
(1) Sample a point in the current subspace and (2) fnd a new 
subspace in which all already discovered points have zero 
infuence, and continue sampling in this subspace. 

We note that for an small enough � the algorithm needs Pl 
i=0 n − i +1 queries to reveal l points. In our implementa-

tion we use n queries per point to reconstruct each revealed 
point over Rn and instead of solving the set of equations 
exactly we solve a least squares problem to fnd regions with 
zero infuence, which has greater numerical stability. 

Theorem D.1 offers a lower bound on the number of points 
that Algorithm 1 discovers. The theorem holds under the mild 
assumption on the sampling procedure, namely that when 
sampling from a subspace R of dimension k, the probability 
of sampling a point within a given subspace Q of dimension 
< k is 0. This assumption is fairly common, and holds for 
many distributions, e.g. uniform sampling procedures. We 
say that a set of vectors Q is d-wise linearly independent if 
every subset D ⊆ Q of size d is linearly independent. For 
a dataset X ⊂ Rn and a training algorithm A, we say that 



the model parameters θ = ( ~w, b) are induced by X and write 
( ~w, b) , A(X ). 

Theorem D.1. Given a training set X ⊂ Rn, let θ = ( ~w, b) 
be the parameters of a logistic regression model induced by 
X . Let d ∈ N be the largest number such that the vectors in 

W = {w~ ~x|~x ∈ X , (w~ ~x, b~x) , A(X \{~x})} 
are d-wise linearly independent, then if all vectors in W are 
linearly independent of w~ , Algorithm 1 (with query access to 
model predictions and example-based explanations) reveals 
at least d points in X with probability 1. 

Proof. We need to show two statements (a) given an affne 
subspace Rq of dimension n − q in which the infuence of 
the frst q < d points is zero, with probability 1 a new point 
is revealed and (b) Algorithm 1 constructs a new subspace 
Rq+1 in which the infuence of the frst q + 1 points is zero, 
with probability 1. 

For q = 0 Rq = Rn and statement (a) is trivially true: 
querying any point will reveal a new point. Now, when q > 0 
and the attacker queries a point ~y ∈ Rq, the only reason 
that no new point is revealed is that for all points ~x ∈ X 

Twe have I~y (~x) = 0. Note that I~y(~x) = 0 iff −w~ ~y + b = 
T−w~ ~y + b~x. Thus, if I~y (~x) = 0 for all ~x ∈ X , then for all ~x 

T T~x1, ~x2 ∈ X , −w~ y~ + b~ = −w~ ~y + b~ . By the d-wise ~x1 x1 ~x2 x2 

independence assumption of w~ i this can only happen in an 
n − d-dimensional subspace of Z ⊂ Rn . The probability of 
sampling a point in the intersection of this subspace with Rq 
is 0 as dim(Rq ∩ Z) ≤ n − d < n − q = dim(Rq). 

Algorithm 1 Recovering the training set by minimizing the infu-
ence of already recovered points 

1: linearlyIndependent ← True 
2: q ← 0 
3: R0 ← Rn 

4: revealedVectors ← [] 
5: while linearlyIndependent do 
6: ~y ← pickRandomPointIn(Rq ) 
7: ~x ← argmax~z∈X (|I~y (~z)|) 
8: revealedVectors.append(~x) 
9: vectorsNotFound ← getBasisOf(Rq ) 

10: spanningVectors ← [~y] 
11: while vectorsNotFound =6 ∅ do 
12: for ~v ∈ vectorsNotFound do 
13: if ~x = argmaxz~∈X (|Iy~+�~v (~z)|) then 
14: spanningVectors.append(~y + �~v) 
15: end if 
16: end for 
17: � ← 

2 
� 

18: end while 
19: if ∃r ∈ R : ∀~v ∈ spanningVectors : |Iy~+�~v (~x)| = r 

then 
20: linearlyIndependent ← False 
21: else 
22: Rq+1 ← {~y ∈ Rq| |I~y (~x)| = 0}
23: q ← q + 1 
24: end if 
25: end while 
26: return revealedVectors 

To prove Statement (b) we frst note that the attacker can 
recover θ (i.e. the original function) by querying fθ for n + 1 
suitable — i.e., n of these points must be linearly indepen-
dent, and the last one is different but otherwise arbitrary 
point — points and solving the corresponding linear equa-
tions. Knowing θ, the attacker can recover |θ~x| for a vector 
~x ∈ X , given the values of |I~ (~x)| for ~yi ∈ Rn, i ∈ [n + 1] 
suitable points. Similarly, the attacker can reconstruct the 
entire behavior of |I~ (~x)| on an n − q dimensional affne 

yi 

yi 

subspace Rq from n − q + 1 suitable points. 
Lines 9 to 18 in Algorithm 1 fnd these points. Since 

|I~y(~x)| is continuous, the argmax in Line 7 is constant in a 
small region around ~y, as long as there is no tie. Hence, � 
will eventually become suffciently small so that all points 
~ y. If there is a tie for the y + �v reveal the same point as ~ 
argmax at ~y, let S be a open set of points around ~y such 

0that ∀~y ∈ S : | argmax~z∈X (|I~y(~z)|)| > 1. Now either 
dim S = n − q in which case there exists an �-ball B that is a 
subset of S around y such that all points in B reveal the same 
point as ~y, or dim S < n − q in which case the probability of 
selecting S or any point in it is zero. So, with probability 1, 
Algorithm 1 fnds n − q +1 suitable points that all reveal the 
same ~x ∈ X . From this the attacker can determine |I~y(~x)| 
for all points ~y ∈ Rq. In particular, the attacker can recover 
{~y ∈ Rq : |I~y (~x)| = 0} which, again by the assumption of 
d-wise independence, is an n − (q + 1)-dimensional affne 
subspace of R. 

Algorithm 1 recovers large parts of the dataset for high-
dimensional data. If d ≥ |X |, it can recover the entire dataset. 
For d � |X |, only a small part of the dataset will be re-
covered. Algorithm 1 is optimal in the sense that there are 
datasets for which only the points discovered by the algo-
rithm can be discovered (see Figure 11 (Left)). However, 
there are many situations where the algorithm falls short 
of discovering all possible points (see Figure 11 (Right)). 
Furthermore, the algorithm does not exploit the fact that in 
practical situations the k most infuential points would be 
revealed, instead of just one. In fact, incorporating the infor-
mation about the k-most infuential points into Algorithm 1 
yields negligible benefts. The following heuristic offers no 
theoretical guarantees, but works well even when d � |X |, 
as we show next. 

Querying Revealed Points This heuristic is relatively sim-
ple: use previously revealed points to reveal new points. 
When querying a point the Koh and Liang measure returns 
k training points (and their infuence) as explanations. The 
attacker can now use these revealed points in new queries, 
obtaining new points from these queries. This naturally de-
fnes an infuence graph structure over the training set: Every 
point in the training set is a node v in a graph G, with k 
outgoing edges towards the k nodes outputted by the Koh 
and Liang measure. The infuence graph structure governs 
the degree to which one can adaptively recover the training 
set. For example, if the graph contains only one strongly con-
nected component, an attacker can traverse (and recover) the 
entire training set from a single starting point. The following 
metrics are particularly informative: 
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Figure 12: Distribution over the size of the revealed training 
data, starting from a random point in the infuence graph. This 
is obtained by averaging over 10 initiations of the training set. 
Each time roughly the size of the largest SCC is recovered. 
For the Hospital dataset the size of the SCC varies the most, 
hence the multimodal distribution. 

# points Dataset n |X | % of |X | recovered 

Dog/Fish 2048 1,800 1790 99.4 
Adult 104 2,000 91.5 4.6 
Hospital 127 2,000 81.1 4.0 

Table 4: The number of points recovered using our attack 
based on subspace reduction. For small sized, high dimen-
sional data, notably Dog/Fish, the attack can recover (almost) 
the entire dataset. 

Number of strongly connected components (SCCs): a 
high number of SCCs implies that the training set is harder 
to recover: an adaptive algorithm can only extract one SCC 
at a time. It also implies that the underlying prediction task is 
fragmented: labels in one part of the dataset are independent 
from the rest. 
Size of the SCCs: large SCCs help the attacker: they are 
more likely to be discovered, and recovering just some of 
them already results in recovery of signifcant portions of the 
training data. 
Distribution of in-degrees: the greater a node’s in-degree 
is, the likelier its recovery; for example, nodes with zero 
in-degree may be impossible for an attacker to recover. Gen-
erally speaking, a uniform distribution of in-degrees makes 
the graph easier to traverse. 

E Dataset Reconstruction for 
Example-Based Explanations 

We evaluate our reconstruction algorithms on the same 
datasets as the membership inference for example-based ex-
planations. In this section we describe the results for the two 
approaches described above. In Appendix E.3 we compare 
them to some general baselines. 

Dog/Fish Adult Hospital 

#SCC 1709 1742 1448 
#SCC of size 1 1679 1701 1333 
Largest SCC size 50 167 228 
Max in-degree 1069 391 287 
#node in-degree=0 1364 1568 727 

Table 5: Some key characteristics of the infuence graphs 
induced by the example-based explanations (for k = 5). This 
is averaged over 10 random initializations of the training set 

E.1 Attack based on subspace reduction 
Table 4 summarizes the results from our attack based on 
Algorithm 1. For Dog/Fish, we recover (nearly) the entire 
dataset. The number of recovered points for Adult and Hospi-
tal is small compared to the size of the dataset, but especially 
for Adult close to the dimensionality of the data, which is the 
upper bound for the algorithm. In our actual implementation, 
rather than constructing the subspaces and sampling points 
in them we recovered the entire weight vectors and sampled 
points by solving a least squares optimization problem with 
some additional constraints to increase numerical stability. 

E.2 Adaptive heuristic attack 
Table 5 summarizes some key characteristics of the infuence 
graphs for the training datasets (in this section we set k = 
5, larger values of k lead to similar results). Remarkably, 
the infuence graphs are fragmented, comprising of a large 
number of connected components, most of which have size 
1. Each graph seems to have one larger SCC, which most 
of the smaller SCCs point to. This implies that an attacker 
starting at a random point in the graph is likely to recover 
only slightly more than the largest SCC. In fact, a signifcant 
amount of points (up to 75% for the Adult dataset) have in-
degree 0: they cannot be recovered by this adaptive attack. 
Figure 12 illustrates the percentage of the dataset recovered 
when traversing the infuence graph from a random starting 
point. For the Dog/Fish dataset, the largest SCC is revealed 
every time. For the Adult and Hospital datasets the largest 
SCC is not revealed for some points, resulting in limited 
success. 

The order of queries does not affect the overall success of 
the attack, eventually every point reachable from the initial 
query will be revealed. However, minimizing the number 
of initial queries used is desirable.The number of queries 
required to traverse the discoverable part of the infuence 
graph is stable under changes to the query schedule (e.g. 
BFS, DFS, random walk and several infuence-based heuris-
tics resulted in similar performance). In order to benchmark 
the performance of our attacker, who has no knowledge of the 
infuence graph structure, we compare it to an omniscient at-
tacker who knows the graph structure and is able to optimally 
recover the SCCs; this problem is known to be NP-complete 
(the best known constant factor approximation factor is 92) 
(Daligault and Thomassé 2009). We thus compare our ap-
proach to a greedy omniscient attacker, which selects the 
node that is connected to the most unknown points. Com-
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(a) Uniform datapoint sampling. 
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(b) Marginal feature distribution sampling (for the Dog/Fish dataset 
points are sampled in the latent space). 
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(c) True point distribution sampling. 

Figure 13: % of training data revealed by an attacker using dif-
ferent sampling techniques, with k ∈ {1, 5, 10} explanation points 
revealed per query. 

pared to this baseline, our approaches require roughly twice 
as many queries. 

E.3 Baseline Attack 
This section discusses some baseline attacks for reconstruct-
ing the target dataset. Each baseline attack model generates 
a static batch of transparency queries, i.e. new queries are 
not based on the attacker’s past queries. An attacker who has 
some prior knowledge on the dataset structure can success-
fully recover signifcant chunks of the training data; in what 
follows, we consider three different scenarios. 

Uniform samples With no prior knowledge on data dis-
tributions, an attacker samples points uniformly at random 
from the input space; this attack model is not particularly 
effective (Figure 13a): even after observing 1,000 queries 
with 10 training points revealed per transparency query, less 
than 2% of the Dog/Fish dataset and ∼ 3% of the Hospital 
dataset are recovered. Moreover, the recovered images are 
unrepresentative of the data: since randomly sampled images 

tend to be white noise, the explanation images offered for 
them are those most resembling noise. 

Marginal distributions In a more powerful attack sce-
nario, the attacker knows features’ marginal distributions, 
but not the actual data distribution. In the case of images, the 
marginal distributions of individual pixels are rather uninfor-
mative; in fact, sampling images based on individual pixel 
marginals results in essentially random images. That said, 
under the Inception model, an attacker can sample points 
according to the marginal distribution of the latent space fea-
tures: the weights for all nodes (except the last layer) are 
public knowledge; an attacker could reconstruct images us-
ing latent space sampling. Figure 13b shows results for the 
Hospital dataset, and the Dog/Fish dataset under the incep-
tion model. This attack yields far better results than uniform 
sampling; however, after a small number of queries, the same 
points tended to be presented as explanations, exhausting the 
attacker’s capacity to reveal additional information. 

Actual distribution This attack model offers access to the 
actual dataset distribution (we randomly sample points from 
the dataset that were not used in model training). This re-
fects scenarios where models make predictions on publicly 
available data. Using the actual data distribution, we can re-
cover signifcant portions of the training data (Figure 13c). 
We again observe a saturation effect: additional queries do 
not improve the results signifcantly. 


