The Web's Sixth Sense:

A Study of Scripts Accessing Smartphone Sensors

Anupam Das

North Carolina State University

Joint work with Günes Acar, Nikita Borisov and Amogh Pradeep

https://sensor-js.xyz

PRIVACYCON

Web Browsing is Increasingly Mobile

New Mobile Web APIs

- Touch Events
- Vibration
- WebXR (VR/AR support)
- Sensors
 - Orientation
 - Motion
 - Ambient Light
 - Proximity

```
window.addEventListener("devicemotion", motionHandler);
function motionHandler(evt){
 // Access Accelerometer Data
 ax = evt.accelerationIncludingGravity.x;
 ay = evt.accelerationIncludingGravity.y;
  az = evt.accelerationIncludingGravity.z;
 // Access Gyroscope Data
 rR = evt.rotationRate;
 if (rR != null){
   gx = rR.alpha;
   gy = rR.beta;
   gz = rR.gamma;
```

Sensor APIs

- Orientation
 - Orientation about the X, Y, Z axis (°)
- Motion
 - Accelerometer (m/s²)
 - Accelerometer w/o gravity (m/s²)
 - Gyroscope (°/s)
- Ambient light
 - Light sensor (lux)
- Proximity
 - Proximity sensor (cm)

		and the same					
	#	9 #	е	€ €	O	0	
Basic support	Yes	Yes	Yes	6	No	4.2	
DeviceMotionEvent(constructor	59	59	?	?	?	?	
acceleration	Yes	Yes	Yes	6	No	4.2	
accelerationInclud	Yes	Yes	Yes	6	No	4.2	
interval	Yes	Yes	Yes	6	No	4.2	
rotationRate	Yes	Yes	Yes	6	No	4.2	

No Permissions for Sensor APIs

- Available to any web page without permission check
- Try it! https://sensor-js.xyz/demo

Stop demo

Num. of datapoints: 20

Orientation

- X-axis (β): 106.9652332524°
- Y-axis (γ): -30.0013331035°
- Z-axis (α): 73.0466582460°

Accelerometer

- X-axis: 1.0333687067 m/s²
- Y-axis: 0.1394615173 m/s²
- Z-axis: 4.9345464706 m/s²
- · Data Interval: 16.00 ms

Accelerometer including gravity

- X-axis: -0.3974374831 m/s²
- Y-axis: 9.5193462372 m/s²
- Z-axis: 2.4564509392 m/s²

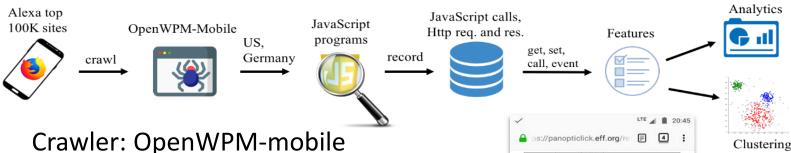
Gyroscope

- X-axis: -6.1037016485°/s
- Y-axis: -0.9765922936°/s
- 7-axis: -8.6062193542°/s

API Exposure Risks

- Keylogging
 - PIN recovery¹, keystroke recovery from nearby keyboard²
- Surreptitious recording³
 - Accelerometer and Gyroscope are low-fi microphones!

- Surreptitious geolocation
 - Motion changes (e.g., subway)⁴
 - Ambient light changes
- Fingerprinting
 - Stateless tracking⁵
- Biometrics
 - e.g., gait
- 1. Mehrnezhad et al. "Touchsignatures: identification of user touch actions and PINs based on mobile sensor data via JavaScript." JISA, 2016.
- 2. Marquardt et al. "(sp) iPhone: decoding vibrations from nearby keyboards using mobile phone accelerometers." CCS, 2011.
- 3. Michalevsky et al. "Gyrophone: Recognizing Speech from Gyroscope Signals." USENIX Security, 2014.
- 4. Watanabe et al. "RouteDetector: Sensor-based Positioning System That Exploits Spatio-Temporal Regularity of Human Mobility." WOOT. 2015.
- 5. Das et al. "Tracking Mobile Web Users Through Motion Sensors: Attacks and Defenses." NDSS. 2016.


In This Talk

We look at -

- which websites and scripts use sensors?
- ...for what purposes?
- what can be done to mitigate the risks?

Data Collection and Analysis

- Crawler: OpenWPM-mobile
- Based on OpenWPM framework
- Develop a Mobile version
 - Emulate mobile environment: user agent, screen size, extensions, fonts, etc.
 - Capture addEventListener calls
 - Generate sensor APIs events and return realistic sensor data stream

Sensor Access

Sensor	# sites	# script domains
Motion	2653	384
Orientation	2036	420
Proximity	186	50
Light	181	35
Total	3695	603

including...

- cnn.com
- taobao.com
- tmall.com
- cnet.com
- alibaba.com
- foxnews.com
- zillow.com
- wellsfargo.com
- reuters.com
- bloomberg.com
- groupon.com
- hotels.com

Who is using sensors?

Sensor	Top 3 domains	# sites	Top rank
Motion	serving-sys.com	815	67
	adsco.re	648	570
	doubleverify.com	517	187
Orientation	adsco.re	648	570
	alicdn.com	417	9
	yieldmo.com	83	100

Exfiltration detection

 Trigger sensor events with easyto-recognize values:

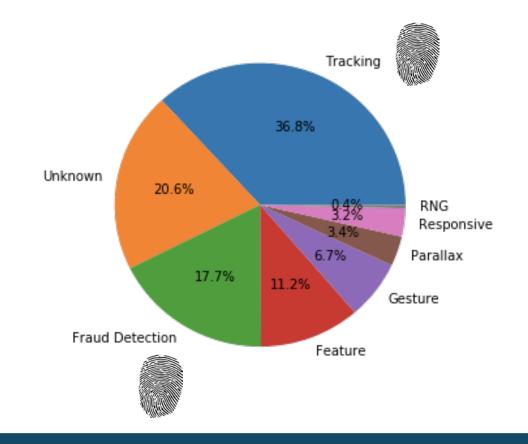
```
42.1234 (fixed) + 0.00005468 (random)
= 42.12345468
```

 Look for raw and base64 encoded values in the request URLs and payload

Domain	Sen- sors	Enco- ding	# sites	Top site
b2c.com	AOPL	b64	53	498
perimeterx.com	А	b64	45	247
wayfair.com	А	b64	7	1136
moatads.com	0	raw	5	3616

^{* &#}x27;A': accelerometer, 'G': gyroscope, 'O': orientation, 'P': proximity, 'L': light

Clustering to understand use cases


- Low-level features: JS API
 - get_window.navigator.userAgent
 - set_window.document.cookie
 - call HTMLCanvasElement.toDataURL
 - addEventListener deviceMotion, ...
- High-level features: fingerprinting
 - Canvas, Battery, AudioContext, ...
- ~400 features per script

- Use DBScan for clustering
- Refinement techniques to reduce "noisy" cluster
- Use Moss to look at source code similarity
- Manual analysis of 3–5 scripts in each cluster

Use Cases

- Tracking
 - Fingerprinting, audience recognition, session replay
- Fraud detection
 - Bot detection
- Feature detection
- Gesture control
- Parallax tilt scrolling
- Responsive design
- RNG

Fingerprinting

	Canvas FP	Canvas Font FP	Audio FP	WebRTC FP	Battery FP	Any FP	Total
Motion	56.7	0.2	19.8	6.8	5.6	62.7	501
Orientation	36.2	3.4	5.7	6.2	4.5	41.7	650
Proximity	2.1	0.0	47.9	0.0	49.0	51.0	96
Light	19.5	1.2	56.1	15.9	57.3	76.8	82

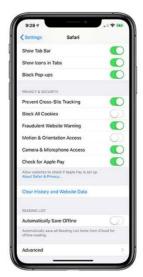
Percentage of sensor-using scripts that also perform fingerprinting

What can be done?

- Ad blockers, tracking protection mode?
 - blocklists miss the long tail (blocking rate: 1.8%-8.6%)
 - some sites serve scripts as first-party to avoid blocklists
- Feature Policy API
 - enables publishers to control what APIs are accessible
- Block sensor access from insecure and cross-origin iframes (W3C)
 - browsers don't always follow recommendations

What can be done? (cont'd)

- Default to low resolution readings: ask user for highprecision readings if needed
- Visual indication when sensors are accessed
- Private browsing/incognito mode: lower resolution or disable by default
- •(Future work...)

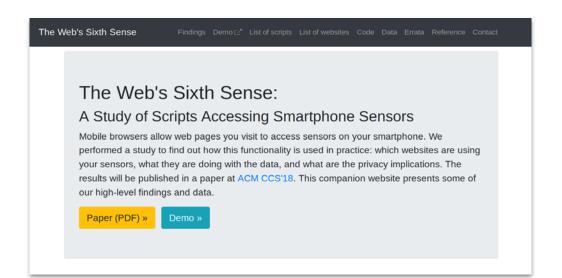


Apple to Limit Accelerometer and Gyroscope Access in Safari on iOS 12.2 for Privacy Reasons

Monday February 4, 2019 7:15 am PST by Joe Rossignol

Last month, Apple released iOS 12.2 in beta with several new features, including the Apple News app in Canada, a redesigned TV remote in Control Center, support for adding HomeKit-enabled TVs in the Home app, and more.

The upcoming software update also introduces a new Motion & Orientation Access toggle under Settings > Safari > Privacy & Security. Toggled off by default, this new setting must be turned on in order for websites to display features that rely on motion data from the gyroscope and accelerometer in the iPhone, iPad, and iPod touch.



- Apple has turned off access to accelerometer and gyroscope by default in Safari since iOS 12.2
- As of May 9, 2018
 Firefox (version 60)
 disabled proximity and light sensor APIs

https://www.macrumors.com/2019/02/04/ ios-12-2-safari-motion-orientationaccess-toggle/

PRIVACYCON

Thanks for listening!

Collaborators

- Günes Acar, Princeton Univ.
- Nikita Borisov, UIUC
- Amogh Pradeep, NEU

Paper, code, and data: sensor-js.xyz

