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I. Introduction 

The purpose of this paper is to examine in some detail the 

optimal strategy for setting civil penalties for a regulatory 

agency that is charged with regulating an industry of risk-
~ 

neutral firms that impose monetarily measurable social injury 

when they violate the regulations. In my model, there is no 

uncertainty in the minds of the firms or the regulator as to what 

constitutes a violation. The agency's budqet, which is outside 

of its control, determines the probability that it will be able 

to detect any particular violation, so this probability is 

exoqenous from the point of view of the agency.l Thus, the 

agency's decision variable is the size of the penalty. Its 

desideratum is to achieve the economically efficient violation 

rate. That is, it wants to set a penalty structure such that the 

firm will not violate unless its expected gain fro~ the violation 

exceeds the expected social injury. The second section of this 

paper describes the standard approach to this problem, explains 

why this approach is unsatisfactory from the practical and the 

theoretical points of view, and des~ribes an alternative approach 

that IS more satisfactory. The third section describes an 

1 The problem of establishinq an optimal probability of detec­
tion is left to the leqislative hody that sets the hudget. For 
discussion of how this optimal probability might be set, see 
Becker, Landes and Posner, Polinsky and Shavell, and Keenan and 
Rubin. 



empirical implementation of this alternative approach. Section 

IV discusses some extensions. 

II. The Optimal Penalty 

The standard approach in the literature to the optimal 

penalty problem is to set it equal to (G/y), where G is the 

social injury from violation and y is the probability of being 

fined. This result comes from a one-period model in which the 

violator gains an amount G* from the violation. Letting P 

represent the penalty imposed if he is caught, his net gain from 

violation is (G*-P) if caught l and (G*) otherwise. Thus, his 

expected gain is (l-y)(G*) + y(G*-P). One can verify directly 

that if the penalty is set equal to (G/y), the expected gain will 

be positive (and the violation will occur) if and only if the 

gain exceeds the social injury (G* > G). 

For an agency that actually has to make concrete decisions 

on the level of penalties, this model is deficient on the levels 

of both theory and practice. The theoretical problem is that 

this model looks upon the setting of the penalty as a one-period 

problem; a potential violator either violates or does not, 

and there is some set probability of catching him during the 

period. This is clearly an unrealistic model for the type of 

on-going multi-period infractions regulated by agencies such as 

lIn this paper, I assume that firms "caught" or "detected" are 
fined with probability 1. 
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the Federal Trade Commission. Rather than beinq one-time 

violations, as are many crimes, these regulatory violations, once 

they beqin, typically continue until the violator is caught. It 

is this kind of violation with which this paper is primarily 

concerned. As I will show later, the one-period model is 

equivalent to a multi-period model, where the probability of 

detection remains the same each period. Because of this 

equivalence, the solution that comes out of these models--the 

penalty should equal the social injury divided by the probability 

of detection--is correct if and only if the periodic probability 

of detection remains constant over time. For some classes of 

violations, theory and evidence indicate that this may be a qood 

approximation of reality, but for others it is not. For example, 

many of the Federal Trade Commission's consumer protection 

cases come from consumer complaints. The likelihood that a firm 

will be investiqated in any given period is positively related to 

the cumulative number of complaints in its file as of that 

period. When investigations are based on the number of 

accumulated complaints, the chance of detection is virtually nil 

when a violation begins, since complaints do not begin to arrive 

immediately at the FTC, but this chance increases each year the 

violation continues and complaints accumulate. If the 

probability of detection does not remain constant over time, then 

the penalty calculation based on dividinq injury by "the" 

probability of detection makes no sense, because there is no 

unique number for this probability. 
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One could in principle adapt the one-period model to a multi-

period context by varying the penalty depending on the violation 

length in such a way that the standard equality is met in each 

case, i.e., P(T) = y~T)' where y(T) is the probability of being 

caught at time T after violation begins. This would mean that, 

given any lenqth of violation, it would be profitable to continue 

the v i<.)la t ion one Hlv c period if and only if G* > G. Suppose, tor 

example, that the potential injury from violation is $100 per 

year, and that the probabilities of detection in the first three 

years of violation are i' i, and 1. Then, the appropriate penalty 

structure for this firm using this approach would be $500, $400, 

and $100, depending on whether the violation is caught during the 

first, second, or third year of violation. With such a structure, 

a firm that has never violated, but is contemplating a violation 

of one year would find positive expected profits from doing so 

only if G* > G. Likewise, for a firm that had violated one year 

or two years. It is intuitively plausible, and easily shown, that 

such a penalty structure also makes the expected net gain for a 

strateqy of 'permanent' violation positive if and only if G* > G. 

However, while such a variable penalty structure is optimal for a 

certain class of violation l , it presents several problems in 

theory and at least one in practice. 

1 For violations that involve a sequential "violate--do not 
violate" decision each period, the variable penalty structure is 
superior to a fixed penalty. For violations that involve a once-

(footnote continued) 

-4-



One problem, 0f course, is that by recognizing that the 

periodic probability of detection increases over time, this 

approach prescribes a penalty that is inversely related to the 

actual length of the violation. The firm that is caught with its 

hand in the cookie jar on its first attempt is thus fined an 

amount approachinq or equal to its wealth, while the firm that is 

finally cauqht after sneakinq cookies for many years is only fined 

the value of one cookie. The punishment, being tailored to deter 

prospective violations, does not seem to fit the actual crime. 

For this reason, it seems extremely dubious that this kind of 

model would ever be acceptable as a framework for public policy. 

In ~ddition, a regime of penalties that depend inversely on 

the length of: violation would be certain to raise the cost of en-

forcement. Once a violation was caught, the regulatory agency 

would need to investigate in order to establish the length of the 

violation to set a penalty. This in itself would be costly. 

Furthermore, the firm, once it decides to violate, would want to 

make it appear that its violation had been on-going for a long 

time, so that when it is caught, its fine will be lower. For 

many types of violation, it could do this at low cost by minor 

chanqes in its old files as soon as it begins to violate. This 

in turn would raise even higher the cost of the investigation to 

(footnote continues) 

and-for-all decision (i.e., once the violation begins, it contin­
ues until the violator is caught, or there is an unexpected change 
in the gain or the penalty), the fixed or variable structures are 
equally efficient. 

-5-



establish the true length of the violation. And if the case 

finally goes to trial, a variable penalty would introduce another 

issue into the trial, consuming legal resources as the attorneys 

for the violator argue (in a rather bizarre turn of events) 

that their client has actually been violating much longer than 

the regulators claim and should thus be assessed a lower fine. 

Finally, a penalty structure that makes the penalty depend on 

the violation length also encourages the expenditure of resources 

to evade detection, particularly in the early periods of the 

violation. The model I use in the paper is not equipped to 

handle this issue formally, but an informal argument would be as 

follows: consider a violation for which there is some fixed gain 

(G*) and some probability of detection that increases the longer 

the violation continues (y(T), where! is the period of time 

since the violation commenced). I will compare two regimes, one 

in which the penalty depends on the length of the violation when 

caught (peT) = G/y(T», and one in which the penalty does not 

depend on the length of violation, but is the size required to 

deter a "permanent" violation. (I define the necessary penalty 

size more explicitly in the following section but here it is only 

important that it is independent of the violation length.) Call 

this fixed penalty ~*. Assuming that yeT) approaches 0 as T 

approaches 0 and unity as T approaches infinity, peT) is very 

large for T close to 0 and approaches ~ for T very large. Now, 

the marginal gain from evading detection is the opportunity value 

of leaving the penalty money in the bank for one more period (rP* 
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or rP(T) for a fixed or variable penalty, respectively, where ~ is 

the discount rate), plus the direct gain from another period of 

violation (G* in either penalty regime), minus the difference 

between the penalty next period and the penalty this period (0 

for a fixed penalty, negative for a penalty that decreases with 

the length~of violation). So the marginal value of evading 

detection is (rP* + G*) for a fixed penalty and (rP(T) + 

G*-dP(T)), with dP(T) < 0, for a variable penalty. For small 

values of I, the latter is clearly greater than the former, both 

because peT) is very large for T small and because of the 

negative dP(T) term. Thus, for at least some small values of T, 

the incentive to evade detection is greater under a regime of 

variable penalties, and more resources will be devoted to this 

goal at least toward the beginning of the violation than would be 

devoted under a regime of fixed penalties. While the incentive 

to evade under a variable penalty regime will eventually (for T 

large) fall below the incentive with a fixed penalty, the net 

present value of resources devoted to evasion over the lifetime 

of the violation under the former regime will certainly be larger 

if the rate of discount is high. 

On a practical level also, the prescription to set the 

penalty equal to the injury divided by the probability of 

detection is deficient. To implement this, one would need to 

know the probability of detection, the direct estimation of which 

has data requirements that are apparently impossible to meet. To 

directly estimate this magnitude would require knowledge not only 
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of how many violators are cauqht each year, but also of how many 

were not cauqht, a fact which is by definition impossible to 

know. Other investiqators have used proxies for detection 

probability such as the requlatory aqency's budqet (Block, Nold, 

and Sidak), but such measures are obviously inexact. 

Because the standard approach to penalty calculation is 
~ 

based on a quantity that is not directly estimatahle, and hecause 

its implications in a multi-period framework are not suitahle for 

public policy, it seems desirahle to develop an alternative 

approach, one that is based on an explicitly multi-period model 

and that immediately suqqests a way to directly estimate the 

necessary parameters. I develop such an approach helow. 

In the context of a firm that violates continuously until it 

is cauqht,l at which time a penalty is imposed, the expected net 

present value of violation net of penalty is: 

(1) E 
o 

1 This formulation assumes that the decision to violate is a 
once-and-for-all decision, rather than a sequential period-by­
period decision. One can make reasonable arquments about whether 
it is more realistic to model these decisions as once-and-for­
all, or sequential. Different types of violations seem to fit 
more easily into one cateqory or the other. As I noted earlier, 
this paper is mainly concerned with the former type of violation, 
since it is this kind of violation with which many requlatory 
aqencies (as opposed to law enforcement aqencies) are concerned. 
However, qiven the puhlic policy prohlems discussed ahove that 
would come from a variahle penalty structure, the fixed penalty 
that comes from the formulation in (1) may be the hest feasihle, 
even in the case of the latter type of violation. 
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where ~ is the expectations operator, T is the number of periods 

the violation continues before the firm is caught and fined, G* 

is the gain per period from violation, E is the appropriate 

discount rate, and P is the penalty. Performing the integration, 

(l) is equal to: 

(2) G*[(l - E e-rT)/r) - P E(e- rT ) 
~ 

The optimal penalty p* is: 

(3) p* = ~ [(1 - Ee-rT)/rE(e- rT »), 

where G is the social injury from violation. The optimality can 

be verified by substituting E* for P in (2), indicating that the 

expected gain net of penalty will be positive (and the violation 

will occur) if and only if Q* > G. The variable T is the 

"waiting time" until detection, and is regarded here as a random 

variable from the viewpoint of the firm and the regulatory 

agency. The term Ee- rT is, of course, the moment generating 

function for the random variable T, and its value can be easily 

looked up in any standard statistical text (e.g., Mood, Graybill 

and Boes, Appendix B) for any given distribution of T. Since T, 

the time until detection, is historically observable for 

different classes of cases, we should in principle be able to 

estimate its distribution. 

First, consider a special case. Suppose that the 

probability of catching a violator each (very short) period is 

constant (independent of the violation length) and equal to A. 

Then, the length of time from the beginning of violation until 
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the violation j3 caught has an exponential distribution with par-

meter A (c.f. Mood, Graybill, and Boes, p. 121). That is: 

(4) f(T:A) = A e- AT , 

(The frequency of such a distribution declines exponentially with 

T.) The moment generating function for such an exponential 

distribution is: 

(5) E e- rT - A - A+r 

Substituting (5) into (3) gives: 

(6) p* = G[l-(A:r))/r(A:r) = G/A. 

Tnis is the same answer that comes from the familiar I-period 

problem: the length of the violation is irrelevant: the penalty 

is always the one-period gain divided by the (constant) proba-

bility of detection. The reason this is true is that, although 

the problem is multi-period in nature, it is entirely repetitive. 

That is, the potential violator is faced with the same "game" 

each period, so a penalty that deters violation one period will 

do so in every period. 

For some classes of violations, we would expect that the 

probability of detection really does remain more or less 

constant. Cases against firms that are under surveillance (for 

whatever reason) would not generally be triggered by complaints, 

but rather by the (probably random) checking or surveillance pro-

cess. It would seem, therefore, that the one-period probability 
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of being caught is the same for first-year violators as it is for 

tenth-year, although the cumulative probability, of course, is 

much higher over 10 years. For these cases, then, we would 

expect that the distribution of T would be exponential, and to 

compute the optimal penalty, we would use the maximum likeli-

hood estimabe of l/A, or the mean of the sample distribution of 

T. 

For other kinds of investigations, many of which are 

initiated in response to cumulative complaints, the probability 

of detection may increase with the length of violation. Then, 

the distribution of T would not be exponential, and the frequency 

might not even be a monotonically declining function of T. How-

ever, using equation (3), we can still easily develop an optimal 

penalty formula by examining the sample distribution of T to 

determine what sort of distribution seems to fit, estimating the 

parameters of the distribution from the sample distribution, then 

substituting these estimated parameters into the moment 

generatinq functions in (3). 

For example, we show in the next section that for one very 

larqe class of Federal Trade Commission cases (Section 5 redress 

cases), the frequency of T appears to be unimodal. One candiate 

for modelling this distribution is the gamma distribution, with 

parameters l and~, i.e.: 

( 7 ) f(T; A,y) 
y y-l 

= A T e-AT/f(y) 

-11-



where r(y) is the gamma function, defined as r(y) 

for y>O. The moment generating function for this distribution is 

equal to (A/A+r)Y, so the optimal penalty could be computed by 

substituting this into (3) to derive: 

A maximum likelihood estimate of p* would be the solution to (8) 

with the maximum likelihood estimates of A and L substituted for 

A and y in the term in [ ]. 

III. Evidence and Implications 

This section discusses some evidence on the distribution of 

T for several classes of Federal Trade Commission cases, and the 

implications for estimating the optimal penalty. To claim that 

the historical distribution of T can be used in this estimation 

requires certain assumptions about firm beliefs and behavior. I 

assume that all relevant firms believe that if they do violate, 

the distribution of their own times until detection will match 

the distribution of ! in my sample. This essentially means that 

the underlying population of firms must be homogeneous in those 

characteristics that affect the chances of getting caught. (This 

is why it is important to examine the hypothesis that this dis­

tribution may be different for different classes of violations.) 

In particular, I assume that firms that choose to violate and 

eventually get caught are representative of the other firms in 
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the population with respect to these characteristics bearing on 

the chances of getting caught, though not necessarily with 

respect to other characteristics. I do not make any specific 

assumption about why one firm chooses to violate and another does 

not, but I do assume that it has nothing to do with character­

istics affecting detection. 

The Federal Trade Commission has compiled a list of cases 

since 1974 in which the FTC has secured a civil penalty or 

redress, with the salient features of each case, including the 

dates during which the violations occurred. For different 

classes of cases, I tabulated the lenqths of violation before 

detection, I, and the frequency distribution in year-long 

intervals for these different cases is reported in tables 1-4. 

In each table, I also report the cumulative sample distribution 

and the frequency and cumulative distributions of a theoretical 

distribution, with parameters estimated by maximum likelihood 

methods, that seems to fit the sample. The results are interest­

ing not only because of what they imply about the probability of 

detection and appropriate penalty multipliers for different 

classes of cases, but also because they seem to support the 

hypothesis that the probability of detection depends on the 

lenqth of violation for Section 5 cases, but not for some other 

classes of cases. 

Table 1 displays the information described above for order 

violation cases, that is, cases brought aqainst companies for 

non-compliance with provisions of consents or litigated court 
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orders. The sample distribution vf T looks similar to an 

exponential distribution, being more or less downward sloping. 

Neither of two qoodness-of-fit tests would allow rejection of the 

hypothesis that the sample of T was drawn from an exponential 

distribution with parameter equal to the inver.se of the sample 

average T.l Since an exponential distribution for T would be - ~ 

produced if and only if the periodic probabi]~~v of detection is 

independent of the length of violation, this evidence can also be 

viewed as support for the proposition that this independence 

holds. The corollary is that the' first-best solution to the 

optimal penalty prohlem is to make penalties equal to the 

periodic social injury multiplied by the averaqe lenqth of viola­

tion as an estimate of (1/A).2 The fiqures in table 1 suqqest 

that the appropriate estimate of (l/A) is 3.10 years for this 

class of case. 3 

Table 2 contains similar information for cases based on 

Commission determinations, that is, cases brought againit 

companies for continued violation after receipt of notification 

that their practices were unfair or deceptive, as determined in 

1 The two tests were the Kolmogorov-Smirnov test and the 
chi-square goodness-of-fit test. The former is a test of the 
simple hypothesis that a sample is drawn from a specific 
distribution with a pre-specified parameter(s). - The latter is a 
test of the composite hypothesis that the sample is drawn from a 
class of distributions with the parameter(s) estimated from the 
saml11e. 

2 The averaqe lenqth of violation in the sample is the maximum 
likelihood estimate of the inverse of the parameter A in equation 
( 6) • 

3 However, there are reasons to believe that this estimate is biased 
downward by around 14%. A better estimate would be around 3.60 years. 
See the Appendix for a discussion of this bias. 
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previous Commission orders. l The sample 1S considerably smaller, 

and the average violation length shorter than for order violation 

cases,2but once again the sample distribution resembles a drawing 

from an exponential distribution. Neither the Kolmogorov-Smirnov 

test nor the chi-square goodness-of-fit test would reject the null 

hypothesis that the sample was drawn from an exponential distribu­
~ 

tion with parameter equal to the inverse of the sample average. 

- Table 3 displays a summary of the data we have on cases that 

are based on Section 5 of the FTC Act, which prohibits unfair or 

deceptive practices. These cases are frequently the result of 

investigations based on consumer complaints. In general, holding 

firm size constant, the more co~plaints the FTC has re~eived as 

of some given time, the more likely is an investigation to be 

launched at that time. Because there is a lag between the begin-

ning of a firm's injurious practices, and the time when consumers 

start complaining, and because the number of complaints in a 

company's fiie accumulates over time, it would appear that the 

periodic probability of detection is a positive function of the 

length of violation for this class of cases. As we noted 

before, when this probability is a function of the violation 

1 The FTC is able to seek civil penalties against firms that act 
with the knowledge that their practices are unfair or deceptive. 
The usual practice has been to send firms a synopsis of a previ­
ous case in which the Commission determined that their practices 
were unfair or deceptive. If the firm is detected in violation 
after receiving the 'synopsis, a case is brought seeking civil 
penalties. 

2 The average in the sample is 1.46 years. ' There are reasons to 
think this may be a slightly downwardly biased estimate of the 
true expected waiting period. A better estimate would be around 
1.54 years. See the Appendix for a more detailed discussion. 
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length, the distribution of the random variable !, the length of 

violation before detection, is not exponentially distributed, and 

may be unimodal. Indeed, that is the form of the sample distri-

bution in Table 3. In fact, in contrast with the other cases, 

both the Kolmogorov-Smirnov and chi-square goodness-of-fit tests 

would reject at high confidence (greater than 99 percent) the 
~ 

hypothesis that this sample was drawn from an exponential distri-

bution with parameter equal to the inverse of the average value 

of T, (its maximum likelihood estimate under this hypothesis). 

Table 3 also displays the frequency and cumulative distributions 

of a distribution that would seem to be a better candidate for 

describing the distribution of !. It is a gamma distribution, 

with the two parameters estimated by maximum likelihood methods 

from the sample. Neither of the two goodness-of-fit tests would 

reject (with 90 percent confidence) the hypothesis that the 

sample was drawn from this distribution. Substituting the maxi-

likelihood parameter estimates (y = 1.940, A =0.517) into equa-

tion (8), and using an interest rate of 0.05, gives a multiplier 

figure of 3.92 for calculating the penalty. This figure is 

fairly insensitive to the interest rate used: r = 0.10 gives a 

multiplier of 4.09, while r = 0.025 gives a multiplier of 3.84. 1 

1 Applying L'Hopital's rule to the multiplier in (8) shows that 
A A 

the limit of [(l-(A+r)Y)/r(A+r)Y] as E approaches 0 is equal to 

Y/A. For A = 0.517 and Y = 1.940, this limit is 3.75, which is 
the sample-average of !.- As we would expect, if the future is 
undiscounted, the penalty should just equal the periodic gain 
times the number of periods a violator could on average expect to 
remain undetected. 
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Finally, Table 4 displays the evidence from a smaller sample 

of another class of cases brought by the FTC - cases based upon 

practices that either violated the Truth in Lending Act or that 

were judged by the Commission to be unfair or deceptive because 

of concerns closely related to the Truth in Lending Act. This 

sample is lnterestinq because it is the most homogeneous of any 

of the classes of cases reported here in terms of the specific 

violation upon which each case is based. For this group of 

cases, we would not reject the hypothesis that the sample came 

from an exponential distribution. The appropriate multiplier for 

these cases would be 1.86 years~ 

The implications of this evidence are clear. Th~re do seem 

to be differences among classes of cases with respect not only to 

the "average" probability of catching violators, but also with 

respect to whether this probability remains constant over the 

period of the violation. The evidence indicates that for some 

classes of cases, for example, those that depend on complaints 

for the initiation of the investigation, the probability of 

detection should not be treated as constant. 

IV. Extensions 

In this section, I discuss several extensions of this 

analysis, including the implications of generalizing the model to 

allow for the possibility that firms may have finite and random 

lives (with the end of the firm's life meaning that the firm no 

longer gains from violating, nor can it be caught). I first 
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discuss the implications for the theoretical calculation of the 

optimal penalty, and then the implications for the empirical 

estimation of the necessary parameters. At first blush, one 

might conjecture that this modification in the model would mean 

that the optimal penalty should be larger, since there is some 

chance that~ the firm will not be caught in its life-time and so 

will avoid paying any penalty. One might also conjecture that 

the method used in the empirical section to estimate the optimal 

penalty would give downwardly biased results. For the case of 

constant probability of detection, I show that the first 

conjecture would be wrong and the second correct, though the bias 

in the estimate may not be serious. 

In examining the theoretical implications, it is convenient 

to consider first a world populated with firms with finite and 

fixed lives, fixed in the sense that the life-time of each firm 

is the same and is known to both the firm and the regulator. Call 

the life-time z. The desideratum, once again, is to devise an 

optimal penalty ~* such that the expected present value of the 

gain from violation will exceed the expected present value of the 

* penalty if and only if the periodic gain to the firm (G ) exceeds 

the periodic social injury (G). 

As in Section II, let r be the discount rate (per period), A 

be the (constant) probability of detection per period, and T be 

the number of periods before the violation is detected. (This 

means that T has the distribution shown in equation (4) except 

that it is truncated at z.) In this formulation of the problem, 
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for the firm to be caught requires that T < z. So, for a firm 

prospectively considering a strategy of violation, the present 

value of the penalty the firm will pay is: 

(9) PVP = P e-rT if T < z 

= 0 if T > z. 

If T is exp-onentially distributed, the expected present value of 
1. 

the penalty is therefore: 

z 00 

(lO) E(PVP) = f (P e-rT ) A e-ATdT + 
o z 

The firm qains an amount G* each period until it is caught, or it 
, 

expires, whichever comes first. After it expires, its "gain" is 

o for each period thereafter. The present value of the firm's 

total gain is: 

* 
( 11) PVG fTG* e-rtdt G (1-e- rT ) if T < = = - z 

0 r 

fZ * e-rtd t 
G* 

(l-e- rz ) if = G = - T > z. 
0 r 

The expected present value of the gain from violation is 

therefore: 

(12 ) 
* * z G T 'T G ex>' E(PVG) = f (--)(l-e- r ) Ae- A dT + (--)(l-e-rz ) f Ae-ATdT 

Orr z 

* = (~)(l-e-AZ _ (_A_) (1-e-(r+A)Z) 
r r+A 

* = ( ~) [(1 - _A_) (1 - e - ( r + A )~] 
r r+A 
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The optimal penalty is: 

(13) p*'=(f). 

The optimalfty can be verified by noting that when £.* is sub­

stituted for P in (10), a comparison of (10) and the last 

equality in (12) shows that the expected present value of the 

qain exceeds the expected present value of the penalty if and 

only if G* > G. Comparing (13) with (6), it can be seen that the 

optimal penalty is the same, whether the firm's life is finite or 

infinite. This is easily generalizable to the case when the 

firm's life-time is random. Suppose that ~, instead of being 

fixed, is random with a frequency distribution g(z). Then the 

expectations in (10) and (12) would need to be taken over all 

possible values of ~, as well as over all possible values of T. 

That is, the expected present value of the penalty would be: 

(10') E(PVP) = oJ'XJ P(r~).) (l - e-(r+).)z) g(z)dz 

fOO (1 - e-(r+).)z) g(z)dz 
o 

The expected present value of the gain from violation would be: 

( 12' ) E(PVG) 
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One can easily verify that the optimal penalty in (13) assures 

that E(PVG) > E(PVP) if and only if Q* > G, even in this case 

when the lifetime if the firm (z) is random. The reason for the 

seemingly counter-intuitive result that the penalty for a firm 

with a finite lifetime is the same as if the firm were infinitely 

lived is as follows: Truncation of the firm's life, whether at a 

random or a fixed time, diminishes the probability that the firm 

will be fined, but also diminishes the expected value of the 

violation proportionately, since the firm gets no gains from 

violation after it expires. The fine necessary to keep it from 

violating unless Q* > Q, therefore, remains unchanged. 

Now, consider the statistical question of how the estimator 

of the optimal penalty used in Section III would be affected if 

the population of firms from which the estimate is made is 

finitely lived, with random lifetimes. The optimal penalty in 

Section III (for cases that are presumed to have a constant 

probability of detection) was estimated by multiplying the gain 

per period by the sample average time until detection. This 

latter value is the maximum likelihood estimate of 1 
(X-) , the 

multiplier in ( 6 ) • The question being considered here is whether 

the sample average is a good estimator of (1) A if firms are 

finitely lived. It would seem that this would be a downwardly 

biased estimate in this case, because large values of T are less 

likely to be observed, having been removed from the sample by 

attrition (expiration). This is indeed the case. If the 
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probability of a firm's expiration is the same each period, so 

that the distribution of a firm's lifetime is exponential, then 

the size of the bias can be exactly derived. Suppose that the 

probability that a firm will expire in any given period is S, so 

that its lifetime is distributed as: 

(15) g(z) = S e- Sz • 
'A 

What we seek is the unconditional expected value of the sample 

average time until detection, which is what we suggested using as 

an estimator of (f) in the optimal penalty calculation (equation 

(13) above). This expected value can be calculated by first 

calculating the expected value of T conditiohal U90n ~, and then 

integrating over all possible value of z. First, consider the 

conditional distribution of T given z. For a given value of ~, 

no value of ! greater than ~ will be observed, since the firm 

would have been removed from the sample. The probability of 

observing any value of ! less than or equal to ~, however, is the 

unconditional frequency of ! divided by the cumulative distribu-

tion of T evaluated at~. That is, the conditional distribution 

of T, given ~, can be written: 

(16 ) 
>..e->"T 

f(TI z) = (1 _ e- AZ ) for T .. z 

= 0 for T > z. 

Thus, the conditional expectation of !, given ~, is: 

( 17) E(TI z) f
z TAe-AT 

= dT = 
o 1 - e- ZA 
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1 z e-'\ z 
= .\ (1 - e-Az) 

The unconditional expectation is: 

(18) E(T) = f E{Tlz) Se- Sz dz 
o 

= J o 
00 

J 
o 

00 

Since (~) is what we are trying to estimate, the last term of the 

right-hand side of the last equality in (18) shows the size of 

the bias. Obviously, the bias depends on the true values of S 

and.\. A realistic estimate of S seems to be about 0.004 for a 

sample population of all commercial and manufacturing firms in 

the economy.l 1 For a true value of (r) of 3.1 (as estimated for 

order violation cases), the bias would be about 2 percent of the 

true value. For classes of firms with an average attrition rate, 

the bias does not seem to be very serious. If, however, we were 

sampling from a population of firms whose probability of "expir-

ing" each year were substantially higher {perhaps because they 

1 This is the average fraction of industrial and commercial fail­
ures in the period 1970-1980, as a proportion of all industrial 
and commercial firms in business in each year. This seems a 
reasonable proxy for the probability that a firm will go out of 
business in a given year. Source: Statistical Abstract, p. 535. 
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act in bad faith, frequently declarinq bankruptcy ano re-orqaniz-

ing to avoid debtors or suits by injureo consumers or requlatory 

agencies), this bias could be more of a problem. For values of ! 

1 = 0.05 and (r)= 3.1, for example, the bias in the estimate of 

<i) is about 21 percent of the true value. 

The e~~dence discussed in this paper raises two interestinq 

~llestions that were not answered here, but could be addressed in 

the framework set out. One question is whether the FTC has 

indeed imposed optimal fines historically. To answer this would 

require a difficult, but not impossible, investiqation, since it 

would 7equire a case-by-case calculation of the social injury 

from violations. The second question relates to Altroqqe and 

Shughart's observation that FTC penalties have been reqressive in 

the sense that, other factors equal, small firms tend to have 

larger penalties (in proportion to firm size) imposed than do 

large firms. They recoqnize that one possible explanation for 

this phenomenon is that the probability of detection is smaller 

for small firms. Whether this is true could be tested by 

dividing the samples I used in this paper into subsamples by size 

of firm and performinq the same analysis I performed on the whole 

sample, or just by testing for a correlation (perhaps by 

regression techniques) between firm size and length of violation 

before detection. 
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v. Conclusion 

The purpose of this paper was to develop a model for 

calculating penalties that would be theoretically and practically 

more appropriate for multi-period violations than the one-period 

model that is currently the only model in the literature. The 

model is depigned to accommodate classes of violations for which 

detection probabilities change over time, and there is some 

evidence to sugqest that this class is important. While the 

model was developed specifically in the context of a violation 

that, once bequn, continues until the violator is caught l , it 

may have more qeneral applicability to virtually all multi-period 

violations, even those that involve sequential decisions, given 

that the alternative penalty structure for such cases (a penalty 

inversely related to the length of the violation) is infeasible. 

An important implication of the model is that the size of the 

penalty that is socially optimal depends on characteristics of 

the class of case being considered, and in particular on whether 

the periodic probability of detection is independent of the 

violation length. Finally, extensions of the hasic model suqqest 

that it is theoretically appropriate for multi-period violations 

with constant prohability of detection, even when violators have 

finite lives, and that the hias produced by the empirical methods 

suggested here is not likely to be serious in this context. 

I Or until some unanticipated changes occur in the qain or the 
penalty. 
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TABLE l.--Length of Violation for ~er Violation Cases 

Length Nurrt>er of Actual Theoretical Actual Theoretical 
(years) Cases Frequency Frequency* Cumulative Cumulative* 

0-1 12 0.273 0.276 0.273 0.276 

2 8 0.182 0.200 0.455 0.476 

3 6 0.137 0.144 0.592 0.620 

4 8 0.182 0.105 0.774 0.725 

5 ~ 5 0.114 0.076 0.888 0.801 

6 1 0.023 0.055 0.911 0.856 

7 1 0.023 0.040 0.934 0.896 

8 0 0 0.029 0.934 0.925 

9 1 0.023 0.020 0.957 0.945 

>9 2 0.045 0.055 1.002 1.000 

Total 44 

Average: 3.10 years. 

* From an exponential distribution with parameter (\ = 0.323) estimated by 
maximum likelihood. 

** Q = 5.92 0(8»0.50 0(9)=0.75 

K-S = 0.09 0»0.20 

the X2 goodness-of-fit Q = r Zi-Zi 2 
is statistic, ( A ) , where y is the number of 

i=l Zi 

partitions into which the sample is divided, Zi is the predicted number of ob­
servations falling in partition i, and Zi is the actual number of observations 
in partition i. If ris the number of parameters estimated, Q has distribution 
bounded between a X2(y-l-r) and a X2(y-l) on the null hypothesis regarding the 
distribution from which the sample was drawn. For a discussion of this 
statistic and this technique, see, e.g. Mood, Graybill and Boes, p. 442 

ff. The K-S statistic is max (IF(X)-F(x)I), where F(x) is the theoretical 
x 

cumulative distribution and F(x) is the actual cumulative distribution. The 
XiS are chosen so as to partition the theoretical distribution by decile. For 
more discussion of this statistic and this technique, see, e.g., Fischer. The 
number 8 is the probability that the sample statistic would exceed its reported 
value, given that the null hypothesis is true. It is thus the probability of 
error if we rejected the null hypothesis based on this evidence. For the X2 
statistic, two 8's are given, one for X2(y-l-r) and one for X2(y-l). 
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TABLE 2.--Lenqth of Violation for Comrrdssion Determinations (Mainly Synopses) 

Lenqth Number of Actual Theoretical Actual Theoretical 
(years) Cases Frequency Frequency * Ctnuulative Ctnuulative* 

0-1 11 0.611 0.496 0.611 0.496 

2 
~ 

2 0.111 0.250 0.722 0.746 

3 3 0.167 0.126 0.889 0.872 

4 0 0 0.063 0.889 0.935 

5 0 0 0.032 0.889 0.967 

>5 2 0.111 0.033 1.000 1.000 

Total 18 

Average: 1.46 years. 

* From an exPOnential distribution with parameter (A = 0.685) estimated by 
maximum likelihood. 

Q = 7.146 0(4»0.10 0(5)::0.25 

K-S = 0.122 0»0.20 

See Table 1 for explanation of these statistics. 
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TABLE 3.--Length of Violatkn for Section 5 Redress cases 

Length Number of Actual Theoretical Actual Theoretical 
(years) cases Frequency Frequency * Cumulative Cumulative* 

0-1 9 0.134 0.105 0.134 0.105 

2 ~ 7 0.105 0.189 0.239 0.294 

3 16 0.239 0.184 0.478 0.478 

4 12 0,179 0.151 0.657 0.629 

5 10 0.149 0.107 0.806 0.736 

6 2 0.030 0.083 0.836 0.819 

7 4 0.060 0.058 0.896 0.877 

8 3 0.045 0.039 0.941 0.916 

9 3 0.045 0.026 0.986 0.942 

>9 1 0.014 0.057 1.000 1.000 

Total 67 

* From a gamma distribution with parameters (y = 1.940, A = 0.517) estimated 
by maximum likelihood. 

Q = 10.836 0(7»0.10 0(9»0.25 

K-S = 0.120 0>0.20 

For the null hypothesis that the sample came from an exponential distrihution, 
the test statistics are: 

0(8) = 24.48 0<0.005 

K-S = 0.236 0<0.01 

See Table 1 for an explanation of these statistics. 
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TABLE 4.--Lenqth of Violation for Truth-in-Lendinq cases 

Length Number of Actual Theoretical Actual Theoretical 
(years) Cases Frequency Frecruency* Cumulative Cumulative* 

0-1 8 0.320 0.416 0.320 0.416 

2 
~ 

9 0.360 0.243 0.680 0.659 

3 2 0.080 0.142 0.760 0.801 

4 2 0.080 0.083 0.840 0.884 

5 3 0.120 0.048 0.960 0.932 

>5 1 0.040 0.069 1.000 1.000 

Total 25 

Average: 1.86 years. 

* From an exponential distribution with parameter (A = 0.538) estimated by 
maximum likelihood. 

Q = 4.772 8(4»0.25 8(5)::0.50 

K-S = 0.10 <5 »0. 20 

See Table 1 for an explanation of these statistics. 
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APPENDIX: A Note on the Data Source and Potential Bias 

I. The Data and Its Compilation 

The data used in the estimations done in the paper came from 

a data set compiled by the Division of Enforcement of the Federal 

Trade Commission. The data set included, for each case between 

1974 and 1984 involving a civil penalty or consumer redress, the 

dates of the violation, the amount of the penalty or redress, the 

relevant court dates and court numbers, the statutory authority 

under which the case was brought, and for many cases, a short 

synopsis. (For a few cases, one or more pieces of this data was 

missing or obviously spurious.) In estimating the dates of the 

violation upon which the case was based, the researcher reviewed 

the complete files of each case, not just the pleadings or other 

court records. To the extent that the investigating attorneys 

recorded the true violation dates for internal FTC use, these 

dates are the ones that are recorded in the data set. Thus, the 

dates should be free of the kind of systematic bias that would 

occur if, for example, the dates recorded were only those dates 

which fell within the statue of limitations, or only those dates 

of violations about which the attorneys had sufficient proof to 

withstand a court-room test. Nevertheless, the data_may not be 

as accurate as we would like, and the results should be inter­

preted with a certain degree of caution. For some cases, dates 

of violation were only available from the pleadings: in others, 

the investigating attorneys may have been unable or felt it 

unnecessary to find out when a violation really began. These 



factors may have downwardly biased some of the rer·orded lengths 

of violation. In other cases, the attorneys may ~ave recorded 

for internal FTC use their suspicions about when violations 

began, even though there was no hard evidence. This could bias 

the records in the opposite direction. 

II. Selection Bias 

In sampling from a distribu~ion of waiting times, the 

estimate of the true mean waiting time will be biased downward to 

the extent that longer waiting times are unobservable., For 

example, suppose that all of the cases in the sample of order 

violation cases were based upon orders issued in 1980, with the 

data set compiled in 1984. Waiting times longer than four years 

would be unobservable, and the average waiting time from the data 

set would be a downwardly biased estimate of the true parame-

ter. If the sample is drawn from an exponential distribution, 

the size of the bias is given by:l 

A 

(AI) e-e 
e 

= [ 8J -(Ei;e) 1 + (e) e where 

e = the true waiting time in the underlying 

distribution~ 

e = the expected sample waiting time~ and 

1 lowe this point to Russ Porter. 
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-e = the maximum ob::;ervable in the sample (4 years in 

the above example). 

While the potential exists for this kind of bias to be a 

problem for data of this kind, it is unlikely to seriously affect 

the conclusion of the current paper for the classes of cases 

considered herein. The largest class of cases, both in terms of 

the FT~'s ca~e-load and the sample used here, comprises the 

"Section 5" cases. These cases are based on Section 5 of the FTC 

act, which has been in effect since 1914.2 The bias introduced 

by such a long limit on the maximum waiting time is negligible. 

The second la.::-gest class of cases are those brought against 

a firm for violating an outstanding order which proscribes or 

prescribes certain conduct on its part. Here, there is more 

potential for bias, since the maximum observable length for a 

violation is the period between the issuance of the order and 

1984. However, a close examination of the data not only 

indicates that the bias is not likely to be large, but also 

allows us to approximate its size and adjust the parameter 

estimate accordingly. First, most (about 58% of the 38 cases 

where proper order dates were recorded) of the cases dealt with 

orders issued in 1973 or earlier, meaning that the maximum 

observable waiting time was at least 10 years. (Only 1 of the 38 

2 It should be emphasized that although the data set contains 
only cases brought between 1974 and 1984, the earlier year 
does not represent a limit on the beginning date of the 
violation. The violation could have begun at any time, and 
the true date is the one which would be in the data set, 
even if earlier than 1974. 
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had an order date after 1976.) Second, when the pre-1973 sample 

is considered alone, the estimate of the mean waiting time is not 

dramatically different from that of the whole sample. For the 

pre-1973 sample, it is 3.33 years; for the whole sample of 38, it 

is 2.75.3 It is probably reasonable to believe that 3.33 is a 

better estimate of the true mean than is 2.75 (or 3.1, for that 

matter), but it may still have some bias. How much? Since the 

average order in the pre-1973 sample was issued about 15.1 years 

before 1984, we could substitute 15.1 for e and 3.33 for e in 

(AI) and solve for e The result is e = 3.6. Doing this 

exercise using the numbers from the full sample ( e = 2.75 

and e = 12.7) gives e = 3.0. Taken together, all of these 

estimates seem to indicate that the average waiting time from the 

larger sample, reported in the text as 3.1 years, is probably a 

bit low as an estimator of the true average. An unbiased 

estimate would probably be closer to 3.6 years. 

The synopsis cases reported in Table 2 also may appear to be 

a problem. These cases are based on a firm's continuation of 

practices after the Commission sends the firm a synopsis of 

previously litigated cases to inform it that it must desist from 

the practices or be considered knowingly in violation of Section 

5 of the FTC Act. In such cases, the practices would become 

violations upon receipt of the synopsis. Virtually all of these 

cases in my data set were based on synopses between 1975 and 

3 This number (2.75) differs from the mean reported in Table 1 
(3.10) because six of the cases used in Table 1 could not be 
used here because of missing or spurious order dates. 
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1979, meaning that the maximum observable waiting time is 

relatively short. Because the cases are so close together in 

time, it is not feasible to perform the same kind of anaysis on 

this class of cases as I did for the order violation cases (i.e., 

comparing a sub-sample to the full sample) to judge the severity 

of this bias. However, there is one good reason to believe that 

the bias is not serious. Generally, when synopses are sent out, 

they are sent to firms that staff believes to be engaging in a 

certain practice. These firms are then checked soon after being 

sent the synopsis to determine if they are in violation. 

(Sometimes synopses are sent to a large number of firms in a 

particular industry because staff believes that most of the 

industry is engaging in the practices, even if they do not 

suspect each individual firm. Even in such cases, staff usually 

follows up the synopsis by an investigation of each firm to which 

it has been sent.) Thus, it would appear that the reason for the 

short violation lengths is the nature of the case, rather than 

any selection bias. And, of course, if the true mean waiting 

time is close to the sample mean (1.46 years), even the 

relatively short maximum waiting time (5-9 years), should not 

introduce sUbstantial bias. Taking the average time between 

synopsis and 1984 (7.3 years) as an estimate of G , and set­

ting G = 1.46 years, solving (AI) gives G = 1.54. 

Some of the "Truth-in-Lending" cases reported in Table 4 are 

based on synopses, and the same thing that is true for the other 

synopsis cases is true for these, that is, detection would 

generally take place very quickly. Others are based on violation 
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of the Truth in Lending Act, which was enacted in 1969. For 

these cases, the maximum waiting time in the sample would be on 

the order of 15 years. For both types of cases, therefore, the 

effect of the bias should be minimal. 
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