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Abstract 

 

 Demand models produce biased results when applied to data aggregated across stores 

with heterogeneous promotional activity.  We show how to modify extant aggregate demand 

frameworks to avoid this problem.  First a consumer-level model is developed, which is then 

integrated over the heterogeneous stores to arrive at aggregate demand.  Our approach is highly 

practical since it requires only standard scanner data of the type produced by the major vendors.  

Using data for super-premium ice cream, we apply the proposed methodology to the random 

coefficients logit demand framework. 
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I. Introduction 

 The usefulness of scanner data for analyzing the retail sector is widely seen as a “success 

story” by both academics and industry participants (Bucklin and Gupta 1999).  It remains an 

open question, however, whether aggregate-level data can reliably be used to estimate the 

demand for a set of products, or if store-level data is required.  Although previous research 

shows that demand estimates based on aggregate data are biased when stores are heterogeneous, 

only partial solutions to the aggregation bias problem have been developed thus far. 

 We propose a methodology for avoiding aggregation bias that allows inter-store 

heterogeneity to be explicitly controlled for with aggregate data.  This is accomplished by 

exploiting information regarding the distribution of store characteristics, information that is only 

partially utilized in extant aggregate demand models.  Our approach is highly practical since it 

relies solely on standard scanner data of the type produced by the major vendors, ACNielsen and 

Information Resources, Inc. (IRI). 

 Throughout this paper, “aggregate-level” refers to data where the sales from multiple 

stores are combined.  Examples of aggregate datasets include city-level data (e.g., all 

supermarkets in Chicago), and city-chain data (e.g., all of Jewel’s supermarkets in Chicago).1  

Researchers who lack access to store-level data must depend on these types of datasets to 

estimate the demand for a set of products.  Unfortunately, aggregate-level scanner datasets do not 

report the marketing-mix characteristics of products at each store, such as their price and 

promotional activity.  Unable to model inter-store heterogeneity with such data, researchers have 

employed a representative store paradigm where each consumer faces the average price and 

promotion level across all stores.  Recent examples include Nevo (2000a), Hausman and 

Leonard (2002), Cotterill and Samson (2002), and Perloff and Ward (2003).  Modeling aggregate 

                                                 
1 A confidentiality agreement with ACNielsen prohibits retailer names from being revealed.  This example 

does not indicate whether the dataset employed contains the Jewel supermarket chain in Chicago. 
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demand in this simplified manner comes at a high cost, however.  The aggregation bias literature 

demonstrates that when stores have heterogeneous marketing-mix strategies, the representative 

store model produces biased demand estimates (Christen et al. 1997). 

 Researchers continue to rely on the representative store paradigm since they lack a better 

alternative.  The two solutions to the aggregation bias problem that have been developed hereto 

each have significant limitations.  The method proposed by Christen et al. (1997) has 

informational requirements that go beyond what is reported in standard scanner datasets, 

preventing it from being widely applied.  Link (1995) suggests an alternative solution for 

avoiding aggregation bias that does not require special data.  Link demonstrates that 

disaggregating the data by each product’s promotional activity reduces aggregation bias.  

Aggregation bias is not completely avoided, however, as stores with the same promotional 

activity for a given product may have different promotions for the other items they carry. 

 We overcome this shortcoming by extending the univariate (own-product) promotional 

decomposition advocated by Link to a multivariate decomposition that accounts for both own- 

and cross-product promotional activity.  This is accomplished by exploiting promotional 

distribution information that is typically reported in aggregate-level scanner datasets.  

Specifically, we more fully utilize data on the fraction of stores where a product has a given level 

of promotional activity (e.g., an in-store display or an advertisement in a weekly circular).  

Further, aggregate scanner datasets separately report each product’s price for each type of 

promotional activity.  We show how to use this information to go beyond the representative store 

model. 

 Heterogeneous stores are allowed for, where each store type is a unique combination of 

promotional activity for each product.  We obtain an aggregate demand model that is consistent 

with store-level heterogeneity by adding up demand for each product across each store type.  

This formulation requires knowledge of the joint distribution of promotions across stores so that 

we can calculate the number of stores of each type.  We estimate this joint distribution using the 
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univariate distribution of each product’s promotional activity, information that is reported in the 

scanner datasets produced by the two major vendors. 

 We demonstrate the advantages of our proposed methodology by estimating the demand 

for super-premium ice cream.  Using a random coefficients logit demand model, we not only 

show that our framework produces sensible results, but estimates that are measured more 

precisely than in the standard, representative store model.  In contrast, the traditional model 

produces implausible estimates due to aggregation bias.  These findings are corroborated by 

Monte Carlo analysis that shows our promotional disaggregation approach substantially 

outperforms the representative store framework. 

 The paper is organized as follows.  Section two reviews the methods that have previously 

been developed to avoid aggregation bias.  Section three presents a consumer demand model that 

accounts for marketing-mix heterogeneity across stores, and then uses this framework to estimate 

the demand for super-premium ice cream.  In section four, we employ Monte Carlo analysis to 

compare our disaggregated promotion framework to the standard representative store model.  

Section five concludes. 

II. Aggregation Bias 

Estimating demand with aggregate data often leads to model mis-specification, or 

“aggregation bias.”  This section reviews two previously developed solutions for avoiding 

aggregation bias.  Since this problem is widely known, we do not detail why aggregation bias 

occurs.  For a detailed consideration of this issue, Theil (1954) and Krishnamurthi et al. (1990) 

analyze the linear model; Lewbel (1992), Christen et al. (1997), and Chung and Kaiser (2000) 

analyze the constant elasticity model; and Allenby and Rossi (1991) and Krishnamurthi et al. 

(2000) analyze the logit model. 

Link (1995) argues that data aggregation across stores with heterogeneous marketing 

activity is the most significant source of bias in practical applications.  Link suggests that 

aggregation bias be avoided by employing data that has been aggregated across stores with 
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homogeneous marketing activity.2  However, even if one obtains data that is aggregated across 

stores where a product’s own promotions are homogenous, heterogeneity in the promotions of 

competing products may remain.  Thus, Link’s approach does not account for aggregation bias in 

cross-product effects.  A further limitation is that it requires demand for each product to be 

separately estimated, since it is possible to disaggregate by promotional activity for only one 

product at a time.  This prevents it from being applied to certain frameworks, such as the random 

coefficients logit model where the demand for each product is jointly estimated (Nevo 2000b). 

 Christen et al. (1997) propose a methodology to “de-bias” demand estimates based on 

aggregate data.  First, demand is estimated using simulated store-level data that has been 

aggregated across stores.  The average difference between the true and estimated parameters 

from the simulation is then added to the estimates from an empirical application, to de-bias the 

results.  It can be difficult to estimate the magnitude of aggregation bias reliably as one may have 

insufficient information to calibrate the simulated data to the actual data.  The de-biasing 

procedure may not eliminate aggregation bias and if done poorly could exacerbate the problem.  

Moreover, due to having data requirements that go beyond what is reported in standard datasets, 

this procedure has not been widely employed. 

III. Demand Model 

 While researchers are aware of the problem posed by aggregation bias, thus far they have 

developed only limited solutions.  Motivated by this gap in the literature, we develop a consumer 

demand model that accounts for marketing-mix heterogeneity across stores.  We then add up the 

demand for each product across consumers to obtain an internally consistent aggregate demand 

model. 

                                                 
2 Boatwright et al. (2004) is a recent example that uses this methodology to avoid aggregation bias. 
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Data 

 We utilize supermarket scanner data provided by ACNielsen for the super-premium ice 

cream category.  The dataset separately reports weekly sales for 14 city-chain combinations for 

the period December 1998 to June 2001 (132 weeks).  However, to avoid complications 

involving entry into certain geographic areas, only a subset of the data is used; we analyze the 

last 80 weeks of data for the 11 city-chain combinations where the same four brands comprise 

the entire category.  To comply with a confidentiality agreement with ACNielsen, they are 

referred to as Brand A, B, C, and D. 

 The data separately reports unit and dollar sales for four mutually exclusive levels of 

promotional activity Mm∈ , where M = {“No Promotion,” “Display Only,” “Feature Only,” 

“Feature & Display”}.  A “Feature” is a print advertisement, such as in a promotional circular, 

while a “Display” is a secondary sales location within a store used to draw special attention to a 

given product.  The demand specification presented below details the conditions under which 

consumer demand can be added up across the subset of stores where a product has a given type 

of promotional activity, so that it can be consistently estimated with aggregate data.  The 

required conditions are less restrictive than those needed to perform an equivalent aggregation 

exercise using a representative store model. 

 In the super-premium ice cream category each brand’s UPCs represent a different flavor, 

with a particular flavor rarely available for more than one brand (e.g., “Chunky Monkey” is 

available only for the Ben & Jerry’s brand).3  The large number of idiosyncratic flavors limits 

the usefulness of this characteristic for estimating substitution patterns.  Other meaningful 

characteristics are common across UPCs for a given brand; each brand’s UPCs share the same 

brand image and, within any given store, they are identically priced and promoted.  Below, we 

                                                 
3 In addition, UPCs vary by package size.  Most brands of super-premium ice cream are available only in 

pint-sized containers, however, with larger package sizes representing a small fraction of category sales.  We 
therefore omit them from the analysis by restricting the dataset to pint-sized cartons. 
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develop a product-level demand specification.  Nonetheless, since the control variables 

employed vary only by brand, this specification simplifies to a brand-level demand model. 

Disaggregated Promotion Model 

 The following details the random coefficients logit demand model employed in the 

empirical analysis.  In every time period t, each consumer i purchases that item which generates 

the highest utility.  The choices are the set of currently available products tJ  or the “outside 

good.”  We normalize the utility derived from purchasing the outside good to a mean utility of 

zero, titiU 00 ω= , where ti0ω  is i.i.d. Type I Extreme Value.  For the remaining choices, 

consumer i’s utility for product j during week t is determined by its promotional activity 
Mmijt ∈ , price ijtp , a set of product characteristics ijtX  that has an associated vector of 

random coefficients iν , a set of additional controls jtZ , and an i.i.d. error term ijtω  that is 

distributed Type I Extreme Value.4 

(3.1) ijtjtiijtijt
ijtmijtm

ijt ZXpU ωγνβμ ++++=  

Product characteristics ijtX  include a set of dummy variables for each brand, price ijtp , and 

dummy variables for “Display Only,” “Feature Only” and “Feature & Display.”  Control 
variables jtZ  consist of brand fixed effects for each city-chain combination, a fourth order time 

trend, the number of products available in the category and the square of this variable (Ackerberg 

and Rysman, Forthcoming). 
 We estimate a separate intercept mμ  and price coefficient mβ  for each type of 

promotional activity Mm∈ .  In light of conflicting empirical evidence regarding whether 

promotional activity makes demand more or less elastic (Blattberg et al. 1995), this specification 

allows for either possibility. 

                                                 
4 City-chain subscripts are dropped from the control variables for ease of notation. 
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 The model accommodates heterogeneity in consumer preferences through random 

coefficients iν .  We assume iν  is mean-zero and i.i.d. Normally distributed with a block 

diagonal variance matrix ]
0

0
[

2

1
V

V
V = .  Denote the probability distribution function of iν  by 

);( Viνφ .  1V  corresponds to the brand dummy variables contained in ijtX (the fixed 

characteristics), while 2V  corresponds to the remaining price and promotion variables (the 

variable characteristics).  We place no restrictions on 1V  and 2V  apart from the requirement that 

each be a symmetric positive semi-definite matrix.  To keep the number of estimation parameters 

manageable, however, we assume the two sets of random coefficients are independently 

distributed. 

 While aggregate scanner datasets separately report each product’s average price for each 

type of promotional activity m, they do not report any information regarding the distribution of 

prices across stores with the same promotional activity.  Since the data lacks the information 

necessary to model this price heterogeneity, we assume that stores with the same promotional 

activity for a given product all charge the same price. 

(3.2) mmipp ijt
m
jtijt =∀= :,  

Condition (3.2) is substantially weaker than the price assumption usually made when estimating 

aggregate demand, where prices are assumed identical across all stores regardless of the level of 

promotional activity (e.g., Nevo 2000a).  We recognize that even this weaker requirement may 

still be restrictive.  In section four, we analyze whether its violation leads to aggregation bias. 

 Rather than relying on a representative store framework, we allow heterogeneous 

promotions across stores.  Store type Gg∈  is a vector containing each product’s promotional 

activity.  Consumer i in week t visits store type tJjijtit mg ∈= }{ .  Denote the element of itg  

that corresponds to product j by )( itj gm .  Product characteristics ijtX  are written as )( itjt gX  

since the included variables vary only by store type g.  This allows us to re-write the utility 

function as follows. 
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(3.3) ijtjtiitjt
itgjm

jt
itgjmitgjm

ijt ZgXpU ωγνβμ ++++= )(
)()()(

 

 Apart from heterogeneity in price and promotional activity, all stores are identical.  In 

addition, we assume each consumer is randomly matched to a store.  This allows us to integrate 

over the distribution of random coefficients iν  for the subset of consumers who visit a given 

store type g, even though aggregate scanner datasets contain no information regarding individual 

stores or consumers. 

 Each consumer i purchases product j only when that item generates the highest utility 

from among the available choices.  The distributional assumptions provided above imply the 
following for g

jtq̂ , predicted unit sales for product j across all stores that have promotional 

activity g during week t. 

(3.4) ii

tJk

ktZigktXgkm
ktpgkmgkm

jtZigjtX
gjm

jtp
gjmgjm

gt
g
jt dV

e

eQq ννφπ
γνβμ

γνβμ

);(

1

ˆ
])()()()([

])(
)()()(

[

∫
∑
∈

+++

+++

+

=  

Q  represents the total number of consumers in the market, while gtπ  is the fraction of 

consumers who visit store type g in week t.  Researchers often choose a value for Q based on 

each market’s population.  We cannot do so here because our data is aggregated to the city-chain 

level, and we have no information regarding the number of people who frequent each chain.  

Therefore, we instead assume that Q equals 10 times each city-chain’s average category sales. 

 As we mentioned earlier regarding super-premium ice cream, product-specific 

characteristics cannot be meaningfully incorporated into the demand specification.  Apart from 

idiosyncratic flavor differences, within any given store product characteristics such as price and 

promotional activity are identical across all UPCs for the same brand.  For this reason we 
aggregate (3.4) to the brand-level, where B denotes the set of brands and g

btq̂  is predicted unit 

sales for brand b across stores with promotional activity g in week t. 
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(3.5)   ii

Bb bjbtJj

jtZigjtX
gjm

jtp
gjmgjm

bjbtJj

jtZigjtX
gjm

jtp
gjmgjm

gt
bjbtJj

g
jt

g
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+++

=∈

+++

=∈
+

==  

All variables in (3.5) that have a product j subscript are identical across products with the same 
brand b.  To simplify notation we therefore replace each j subscript with a jb  subscript.  

Equation (3.5) reduces to the following, where btN  denotes the number of products available in 

time t that are part of brand b’s product line. 

(3.6) ii

Bb

tbZigtbX
gbm

tb
p

gbmgbm

tb

btZigbtXgbm
btpgbmgbm

bt
gt

g
bt dV

eN

eN
Qq ννφπ

γνβμ

γνβμ

);(

1

ˆ

~

]~)(~)(~
~
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[

~
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∫
∑
∈

+++

+++

+

=  

 To account for our transformation from a product- to a brand-level demand model, we 

update the definition of store type g.  We now define g as the set of promotional activity across 

the four brands.  Since there are four brands and four types of promotional activity, G contains 
44  = 256 unique store types.  This simplification is possible since, as we discussed earlier, in the 

super-premium ice cream category each brand’s entire product line is identically promoted 

within any given store. 
 Calculation of g

btq̂  in equation (3.6) requires integration over the random coefficients iν .  

One way to do so is to generate a random sequence of draws L
l

l
1}{ =ν  that are mean-zero and 

i.i.d. Normally distributed with variance matrix V.  We then approximate equation (3.6) as 

follows. 

(3.7) ∑
∑

=

∈

+++

+++

+

≈
L

l

Bb

tbZlgtbX
gbm

tb
p

gbmgbm

tb

btZlgbtXgbm
btpgbmgbm

btgtg
bt

eN

eN
L

Q
q

1

~

]~)(~)(~
~

)(~)(~
[

~
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1

ˆ
γνβμ

γνβμ
π

 



 

- 10 - 

Generating L
l

l
1}{ =ν  using a Halton sequence is a more efficient means of calculating g

btq̂  (Train 

1999).  Since the Halton sequence produces values that are more smoothly distributed over the 

support of the Normal distribution than would occur under random sampling, we can choose a 

much smaller value for L  and still obtain accurate results.  Nonetheless, we set 000,1=L  to 

make equation (3.7) as precise a representation of equation (3.6) as reasonably possible.5 

 Since our objective is to add up demand to the same level of aggregation as the available 
data, we calculate predicted unit sales m

btq̂  by summing across all stores where brand b has 

promotional activity m. 

(3.8) ∑
=∈

=
mgbmGg

g
bt

m
bt qq

)(:
ˆˆ  

This completes our demand specification.  We have shown how to aggregate a consumer-level 

demand model with marketing-mix heterogeneity across stores. 

Representative Store Model 

 To provide a point of comparison to the disaggregated promotion model described above, 

we also consider a counterpart model based on the representative store paradigm.  Utility 
function (3.1) is replaced by the expected utility when each store charges jtp , the average price 

across all types of promotions m.  Previously, we included random coefficients for the price and 

promotional activity at the store consumer i frequents.  In the representative store model these 
variables are replaced by average price jtp  and the percentage of stores with each type of 

promotion m, which we denote by m
jtπ .6  As before, we include an i.i.d. error term ijtω  that is 

distributed Type I Extreme Value.  These changes lead to the following utility function for the 

representative store model. 

                                                 
5 Following Train (1999), we discard the first 10 elements of the Halton sequence since early elements tend 

to be correlated.  Therefore, we generate a sequence of 1,010 elements, rather than 1,000. 

6 In the representative store model we drop the i subscript from ijtX  since the included variables are 

identical across all consumers. 
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(3.9) ijtjtijtjtjtjtijtjtjtijtijtijtijt ZXpZXppUEU ωγνβμων ++++=+== ),,,|(~ , 

where ∑
∈

=
Mm

m
jt

m
jt πμμ  and ∑

∈
=

Mm

m
jt

m
jt πββ  

 Utility function (3.9) implies the following characterization of predicted unit sales for 

product j in week t. 

(3.10) ii

tJk

ktZiktXktpktkt

jtZijtXjtpjtjt

jt dV
e

eQq ννφ
γνβμ

γνβμ
);(

1
ˆ
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∫
∑
∈

+++

+++

+
=  

Since the control variables employed vary only by brand, we replace each j and k subscript in 
(3.10) with a jb  and kb  subscript and then aggregate to the brand-level.  As before, btN  denotes 

the number of items available in time t that are part of brand b’s product line. 

(3.11) ii

Bb

tbZitbXtbptbtb
tb

btZibtXbtpbtbtbt

bjbtJj
jtbt dV

eN

eN
Qqq ννφ

γνβμ

γνβμ
);(

1
ˆˆ

~
]~~~~~[~

][

:
∫

∑
∑

∈

+++

+++

=∈ +
==  

 In the representative store model btq̂  is defined as predicted unit sales across all stores.  

This contrasts with the level of aggregation employed in the disaggregated promotion model.  

The counterpart variable in that model is m
btq̂ , predicted unit sales across the subset of stores 

where brand b has promotional activity m.  Despite this difference, the representative store 

framework is a special case of the disaggregated promotion model.  The two models are identical 

when all consumers observe the same price and promotional activity.  Our disaggregated 

promotion model therefore does not offer any advantage when this condition holds, such as when 

demand is estimated with store-level data. 

 Differences arise, however, when demand is estimated with data aggregated across 

heterogeneous stores.  Consumers visit stores with heterogeneous price and promotional activity 

in the disaggregated promotion model, while all stores are assumed identical in the representative 

store model.  The disaggregated promotion model requires that stores with the same promotional 

activity for a given product all charge the same price.  The representative store model more 
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stringently assumes that every consumer observes the same price.  The disaggregated promotion 

model recognizes that if a product is on promotion in 20% of stores, then 20% of consumers 

observe the promotion and 80% do not.  In contrast, the representative store model assumes that 

consumers observe the average promotional activity across all stores (i.e., everyone observes a 

“partial” promotion).  To summarize, the representative store framework ignores inter-store 

heterogeneity, averaging over differences in price and promotional activity.  This approach is 

problematic since previous research demonstrates it leads to aggregation bias.  In contrast, our 

disaggregated promotion framework explicitly models heterogeneous store types. 

Data Requirements 

 Estimation of the disaggregated promotion model requires only standard scanner data of 

the type produced by the major vendors, ACNielsen and IRI.  Typically, such data separately 

reports dollar and unit sales for four (mutually exclusive) types of promotional activity: “No 

Promotion,” “Display Only,” “Feature Only,” and “Feature & Display.”  Given assumption (3.2), 

price is calculated as dollar sales for promotion m divided by unit sales for that promotion. 

 Scanner data reports information regarding product and promotional distribution through 
a variable known as “All Commodity Volume,” or ACV.  jtACV  is the percentage of total sales, 

across all product categories, accounted for by those stores that carry product j in week t.  This 
represents the percentage of stores that distribute a particular item.  Similarly, m

jtACV  is the 

fraction of stores where product j has promotional activity m.  Note that the percentage of stores 
that carry product j is the sum of its promotional distribution: ∑

∈
=

Mm

m
jtjt ACVACV . 

 We use these distribution measures to calculate two variables.  First, the model requires 

btN , the number of brand b’s products that are available in time t.  We also need m
btπ , the 

fraction of stores where brand b has promotional activity m.  Standard scanner data contains 

sufficient information to construct both btN  and m
btπ .  To calculate the number of products 

contained within brand b’s product line, we add up each product’s ACV: ∑
=∈

=
bjbtJj

jtbt ACVN
:

.  
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We then add up the fraction of stores where each of brand b’s products has promotional activity 
m: ∑

=∈
=

bjbtJj

m
jt

m
bt ACVN

:
.  The percentage of stores where brand b has promotion m is calculated 

as 
bt

m
btm

bt N

N
=π . 

 While each brand’s univariate promotional distribution Mm
m
bt ∈}{π  is calculated in this 

manner, the joint distribution of each brand’s promotions Gg
g
t ∈}{π  is not reported in aggregate 

scanner datasets.  Additional model restrictions must be imposed in order to estimate the joint 

promotional distribution, since a continuum of joint distributions is generally possible given a set 

of univariate distributions. 

 There is a special case, however, where the joint promotional distribution is uniquely 

determined by each brand’s univariate distribution.  Define brand b as having heterogeneous 

promotions in week t when its promotional activity varies across the stores aggregated in the 
data.  That is, when 11

0
>∑

∈
>

Mm
m
btπ

.  The joint promotional distribution is uniquely determined 

by each brand’s univariate distribution if no more than one brand has heterogeneous promotions. 

 This special case commonly arises for the following reason.  In many product categories, 

including super-premium ice cream, retail chains usually feature or display no more than one 

brand in the same city and week.  All other brands will typically be on “No Promotion” in each 

of a retailer’s stores.  At most one brand has heterogeneous promotions in this situation, 

implying that the joint promotional distribution is uniquely determined by each brand’s 

univariate promotional distribution.  This occurs quite often; for 85% of the weekly observations 

in our dataset, only one joint promotional distribution can occur given each brand’s univariate 

distribution.  Our experience indicates this special case frequently arises across a wide range of 

consumer packaged goods, rather than being specific to super-premium ice cream. 

 We have two options for dealing with the remaining 15% of observations where two or 

more brands have heterogeneous promotions.  The first is to exclude such observations from the 

dataset.  The model can then be estimated from the remaining data sample where the joint 
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promotional distribution is uniquely determined by the observed marginal distributions.  

Alternatively, to apply the model to the 15% of observations where the joint distribution is not 

known, we have to make an additional assumption about functional form to get identification.  

Specifically, we assume the joint promotional distribution can be constructed from a copula of 

the marginal distributions.  The data is used to estimate the single parameter of the copula jointly 

with the other model parameters. 

 Deciding between these two approaches involves the familiar bias-variance tradeoff.  The 

obtained estimates will be more precise if one imposes additional structure that allows the model 

to be estimated from the full data sample.  However, they may be biased if the employed 

assumptions are invalid.  We believe that, on balance, the benefit of exploiting the entire data 

sample outweighs the cost of imposing the additional model structure detailed below.  Of course, 

those who believe the benefit does not outweigh the cost can instead estimate the model using 

the subset of the data where the joint promotional distribution is known. 

 We rely on the following framework.  Let each retail chain be composed of a continuum 

of stores.  Brand b’s promotional activity in store s during week t is determined by latent variable 

bstυ , which has a standard Normal distribution.  This variable is used to assign brand b’s 

promotional activity in store s.  We assume brand b’s promotional activity is weakly increasing 

in bstυ  based on the following rank order of promotional activity, from lowest to highest: “No 

Promotion,” “Display Only,” “Feature Only,” and “Feature & Display.”7  This allows us to 

match each value of bstυ  to a particular type of promotion using each brand’s univariate 

promotional distribution.  Brand b’s promotional activity in store s during week t equals m~  if 
)](),([

~:

1

)~:

1 ∑∑
≤∈

−

<∈

− ΦΦ∈
mmMm

m
bt

mmMm

m
btbst ππυ , where Φ  denotes the standard Normal cumulative 

distribution function. 

                                                 
7 It is unclear whether “Display Only” or “Feature Only” is higher ranked.  We obtain similar results when 

we let “Display Only” outrank “Feature Only.” 
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 We then use a Gaussian copula to specify the joint distribution of each brand’s latent 

variable bstυ .  Define Bbbstst ∈= }{υυ , where vector stυ  is mean-zero and i.i.d. Normally 

distributed with variance matrix Ω .  Denote the probability distribution function of stυ  by 

);( Ωstυφ .  To minimize the number of estimation parameters, we assume Ω  has identical off-

diagonal elements ]1,0[∈ρ  and unit values along the main diagonal.8 

 Parameter ρ  represents retailer strategy regarding how products are jointly promoted 

across stores.  Retailers independently set each brand’s promotional activity when ρ  equals 

zero.  As ρ  increases, the promotional activity of competing brands becomes more positively 

correlated.  That is, in stores where a retailer chooses a high level of promotional activity for one 

brand, for larger values of ρ  it more frequently chooses a high level of promotion for the other 

brands in those stores. 

 This framework provides sufficient structure to calculate the joint promotional 
distribution Gg

g
t ∈}{π  .   To calculate g

tπ  for each Gg∈ , we numerically integrate );( Ωstυφ  

over the range of values where the promotional activity of each brand Bb∈  equals )(gmb . 

(3.12) ∫
Υ

Ω=
g
t

stst
g
t dυυφπ );( , 

where })],(),([:{
)(:

1

)(:

1 Bb
gbmmMm

m
bt

gbmmMm

m
btbstst

g
t ∈∀ΦΦ∈ ∑∑

≤∈

−

<∈

−=Υ ππυυ  

 To summarize, this framework uses each brand’s univariate promotional distribution to 

choose a joint promotional distribution from a family characterized by estimation parameter ρ .  

We estimate ρ  jointly with the other demand parameters via maximum likelihood (see the 

following subsection).  As discussed below, ρ  is identified by how variation in this parameter 

                                                 
8 Parameter ρ  does not vary over time and is identical across retailers.  We make this simplifying 

assumption since only 15% of the dataset’s observations identify the joint promotional distribution.  A more flexible 
specification can be employed in situations where it is practical to do so. 
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impacts predicted market shares.  It is not possible to estimate ρ  prior to solving for the other 

demand parameters, since predicted market shares cannot be computed without them. 

 However, one can use the following two-stage estimation procedure to solve for ρ  after 

using a subset of the data to estimate the other demand parameters.  First, restrict the dataset to 

the 85% of observations where no more than one brand has heterogeneous promotions.  Since the 

joint promotional distribution is uniquely determined by each brand’s univariate distribution for 

these observations, predicted market shares do not depend on ρ .  All demand parameters except 

ρ  can be estimated using this restricted dataset. 

 The 15% of observations excluded from the first-stage estimation can then be used to 

estimate ρ .  Parameter ρ  determines the distribution of promotions across stores, which 

ultimately affects predicted market shares.  This is the case since consumer purchase decisions 

depend on whether competing brands are promoted in the same or different stores.  For example, 

a feature advertisement may have a smaller impact on a brand’s sales when a competing brand is 

also being featured. 

 This two-stage procedure is inefficient, since the first-stage estimation relies only on a 

subset of the available data.  That is why we jointly estimate ρ  with the other demand 

parameters.  Nonetheless, since it is possible to identify ρ  from one subset of the data, and the 

other demand parameters from the remaining observations, this procedure demonstrates ρ   is 

separately identified. 

Estimation 

 Before estimating the disaggregated promotion model, we must first specify the 

relationship between unit sales m
btq̂  predicted by the model, and unit sales m

btq  reported in the 

data.  Berry (1994) develops an approach where an aggregate error term m
btε  is included in the 

utility function.  Berry relies on an inversion method in which the set 
Mm

Bb
m
bt

∈
∈}{ε  is solved for 

such that, across all brands b and promotions m, the unit sales predicted by the model exactly 
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equals observed quantity sold.  This specification is theoretically appealing since the error 

structure is integrated within the utility-based demand model.9 

 This approach has two drawbacks, however.  First, the proposed inversion method is 

computationally intensive.  Second, it requires a strong belief that the “correct” model is being 

employed; Berry discusses how his inversion method is sensitive to model mis-specification.  In 

particular, it performs poorly when there is measurement error in unit sales.  While the scanner 

datasets produced by the major vendors are relatively high quality, they are still subject to 

measurement problems.  In addition to the usual misreporting and data processing errors, data 

vendors such as ACNielsen and IRI extrapolate aggregate sales from a sample of stores.  This 

leads to measurement error in reported unit sales. 

 Instead of including the error term as part of the utility function, one might instead model 
measurement error in log unit sales, m

bt
m
bt

m
bt qq ε+= ˆlnln .  This approach is less theoretically 

appealing since the error term is not linked to the consumer utility function.  It also makes the 

strong assumption that measurement error is the only form of model uncertainty.  However, this 

specification has the practical advantage of being less computationally complex than the Berry 

inversion method.  Although we recognize the theoretical appeal of including the error term in 

the utility function, we believe the second approach’s robustness to measurement error and 

reduced computational complexity outweighs this benefit.  Nevertheless, since other researchers 

may have different preferences in this regard, it is important to recognize there is nothing 

intrinsic to the model that prevents m
btε  from being directly included in the utility function. 

 All of the model’s parameters are jointly estimated via maximum likelihood.  We define 
m
bt

m
bt

m
bt qq ˆlnln −=ε  and assume m

btε  is mean-zero and independently Normally distributed.  

Inspection of the data revealed that m
btε  is heteroskedastic, having a higher variance when a 

brand is promoted in only a small fraction of stores.  We account for this by modeling the log 

                                                 
9 A second advantage is that including the error term within the utility function facilitates use of 

instrumental variables.  This is not an issue here since we lack valid instruments.  Supplemental material available 
upon request details the reasons why valid instruments do not exist for this product category. 
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variance as a second order polynomial in m
btπ , the fraction of stores where brand b has 

promotional activity m. 

(3.13) 
2)(210)(

m
bt

m
btm

bt eVar
παπαα

ε
++

=  

Denote the probability distribution function of m
btε  by ))(,( m

bt
m
bt Var εεφ .  This formulation leads 

to log-likelihood function ∑ ∑ ∑
∈ >∈

=
t Bb m

btMm

m
bt

m
bt VarL

0:

))(,(ln ln
π

εεφ . 

 We employ a similar error specification for the representative store model.  The error 
term is defined as btbtbt qq ˆlnln −=ε , where btε  is mean-zero and independently Normally 

distributed.  Each brand has identical promotional activity across all stores in the representative 
store model.  Therefore, the counterpart to equation (3.13) is to assume btε  is homoskedastic 

with variance 2σ .  This leads to log-likelihood function ∑ ∑
∈

=
t Bb

btL  ),(lnln 2σεφ . 

 For both models, we employ Newey-West (1987) standard errors using a lag length of 

four weeks.10  That is, error terms that are from periods within four weeks of each other can be 

arbitrarily correlated.  Robustness checks indicated the standard errors are not sensitive to the 

number of time lags allowed. 

Empirical Results 

 To introduce the data, Table 1 presents the fraction of stores and unit sales that are 

accounted for by each type of promotion.  To give equal weight to each city-chain, we calculate 

these percentages from variable totals for each one, and then take the average.  The table also 

reports the average promoted price for each brand relative to when it is not on promotion. 

Promotional activity plays a significant role in this product category, with promotions 

accounting for 19% to 31% of unit sales depending on the brand.  Unit sales are high, relative to 

                                                 
10 We calculate the variance matrix of the parameter estimates using the standard GMM formulas, where 

the first order conditions from the log-likelihood function are used as moment conditions.  Refer to Hamilton (1994) 
for discussion of this “quasi maximum likelihood” approach of obtaining robust standard errors. 
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the percentage of stores, for each level of promotional activity other than “No Promotion.”  This 

is due to two distinct effects.  First, promotions lead to an outward shift in the demand curve for 

a given brand.  Promotional activity is also associated with a price reduction, with approximately 

10% lower prices when on “Display Only,” and 30% lower when on “Feature Only” or “Feature 

& Display.”  These promotional price reductions are a second factor leading to increased sales. 

Table 2 presents parameter estimates for the disaggregated promotion model.  Price 
coefficient mβ and intercept mμ  increase (in absolute value) in the level of promotion m, with 

“No Promotion” the lowest promotional activity, “Display Only” and “Feature Only” 

intermediate promotions, and “Feature & Display” the highest type of promotional activity.  The 

net impact of these two parameter changes is that a promotion unaccompanied by a price 

reduction leads to only a small, positive increase in consumer utility (and therefore sales).  

However, since promotions make consumer utility a steeper function of price, a price reduction 

accompanied by promotional activity has greater impact than the same price reduction and 

promotion when separately undertaken. 

 Table 2 also presents parameter estimates for the representative store model.  The 

parameters for “Display Only” and “Feature & Display” are imprecisely estimated.  Table 3 

reveals why this is the case.  Retailers typically employ these types of promotions in only a small 

fraction of stores in any given week.  For example, when Brand A is on “Display Only” in at 

least one store in a city-chain, on average 2.5% of stores promote Brand A in this manner.  

Similarly, on average only 8.9% of stores have a “Feature & Display.”  The representative store 

model is unable to isolate the impact of “Display Only” or “Feature & Display” using data 

aggregated with promotions that are more prevalent.  In contrast, the disaggregated promotion 

model estimates these effects quite precisely. 

 In addition to the demand estimates presented in Table 2, the disaggregated promotion 

model has an additional parameter ρ .  Recall that this parameter is used to estimate the joint 

distribution of each brand’s promotional activity.  We obtained the corner solution 1=ρ .  As a 
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robustness check we re-estimated the model assuming 0=ρ .11  We obtained similar results for 

the other demand parameters.  This insensitivity to the value of ρ  does not imply, however, that 

aggregation bias is not a problem.  As discussed earlier, the value of ρ  affects only those 15% of 

weeks where at least two brands have heterogeneous promotions.  In contrast, aggregation bias 

affects the results of the representative store model even when only one brand has heterogeneous 

promotions.  In this case, only one joint promotional distribution can arise given each brand’s 

univariate distribution.  The representative store model ignores this information, and instead 

assumes every consumer observes the average promotional activity across stores.  It is much 

more common for retail chains to promote a single brand than two or more brands at the same 

time.  As such, the disaggregated promotion model requires that we estimate the joint 

distribution of promotions for a subset of those weeks where at least one brand has 

heterogeneous promotions across stores.  This is why the demand estimates produced by our 

model are similar regardless of whether 0=ρ  or 1=ρ , even though aggregation bias 

significantly impacts the results of the representative store framework. 

The first set of estimates in Table 4 presents each brand’s own-price elasticity for each 

type of promotional activity.  This is followed by the matrix of cross-price elasticity estimates, 

calculated when each brand is not on promotion.  The third set of results reports the impact of 

each brand’s own promotional activity relative to “No Promotion.”  All three sets of estimates 

are evaluated at each brand’s average price for the given level of promotion, and are calculated 

assuming the other brands are not on promotion.  This implies the promotional effects shown in 

the third set of results report the combined effect of being on promotion and undergoing the 

average price reduction for that promotion. 

                                                 
11 We also considered the following alternative framework.  We let Gg

g
t ∈}{π  be a weighted average of 

two distributions: the distribution that arises when 0=ρ  and the distribution when 1=ρ .  Using this specification, 
we obtain the same joint distribution as before, where each brand’s promotions are positively correlated to the 
maximum possible extent. 
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As mentioned earlier, one key difference between the two sets of results is that the 

estimates for “Display Only” and “Feature & Display” are imprecisely measured in the 

representative store model.  A second, more critical shortcoming is that the promotional effects 

in the representative store model are implausibly large.  For example, while “Display Only” 

increases Brand A’s sales by 53.1% in the disaggregated promotion model, the representative 

store model predicts an enormous 1914.5% increase.  The magnitude of this effect is not a result 

of imprecise estimates, since the standard error is “only” 315.7%.  The representative store 

model produces similarly implausible estimates for other brands and types of promotions.  This 

finding is consistent with previous research that concludes data aggregation across stores with 

heterogeneous promotional activity often leads to overestimation of own-brand promotional 

effects (Link 1995, Christen et al. 1997). 

IV. Monte Carlo Analysis 

The previous section demonstrates that the disaggregated promotion model generates 

reasonable demand estimates, while the representative store model does not.  Nonetheless, it is 

impossible to state that the former model is superior without knowing the true parameter values.  

Therefore, this section uses Monte Carlo analysis to study differences between the two models, 

specifically whether the poor performance of the representative store model results from 

inadequate control of promotional heterogeneity across stores.  We simulate data using the 

control variables from the super-premium ice cream data in conjunction with the parameter 

estimates for the disaggregated promotion model.  The constructed data is then used to estimate 

the disaggregated promotion and representative store models.  Since the representative store 

model generates imprecise results, we must employ a large number of Monte Carlo simulations 

to calculate accurately the average difference between the true and estimated values.  The high 

computational burden of estimating the random coefficients logit model makes doing so 

impractical. 
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We therefore conduct this analysis under three simplifying assumptions that allow the 

two models to be quickly estimated.  These modifications are i) we employ a standard logit 

specification rather than the random coefficients logit model; ii) error term m
btε  is i.i.d. 

),0( 2σN , rather than heteroskedastic; and iii) m
btε  is directly included in the utility function 

rather than being defined as the difference between actual and predicted log unit sales.  Under 

these simplifications, each model is quickly estimated using the Berry (1994) inversion method.  

The computational burden is much lower than for the random coefficients models employed 

earlier since all but one of the model parameters, ρ , is estimated by ordinary least squares after 

the Berry inversion technique has been applied. 

 We generate the data employed in the Monte Carlo simulations using parameter estimates 

from this simplified version of the disaggregated promotion model.  The disaggregated 

promotion and representative store models are then estimated using data from 5,000 simulations.  

Table 5 presents two statistics from the analysis.  First, it reports the average percent difference 

between the estimated elasticities and those calculated at the true parameter values.  In addition, 

we report the standard deviation of the percentage difference across the Monte Carlo simulations.  

By considering both the mean and the standard deviation, we not only assess whether each model 

produces accurate results on average, but also whether they deliver precise estimates. 

 The Monte Carlo results for the disaggregated promotion model are quite accurate.  This 

is not surprising since we generated the data assuming it is the correct model.  Of greater interest 

is the performance of the representative store model.  As is the case with our earlier empirical 

findings, imprecise estimates are obtained for the effects of being on “Display Only” and 

“Feature & Display.”  In addition, the average estimate for these effects is often quite far from 

the true value.  By construction, in the Monte Carlo analysis the representative store model 

suffers from a single mis-specification: it ignores inter-store price and promotional 

heterogeneity.  The similarity of the Monte Carlo results and our empirical findings suggests the 

poor performance of the representative store model is a result of not controlling for marketing-

mix heterogeneity across stores. 
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 The disaggregated promotion model requires we estimate an additional parameter ρ , 

which determines the joint distribution of promotions as a function of each brand’s univariate 

distribution.  Table 6 reports the histogram of the ρ  estimates from the Monte Carlo simulations 

discussed above, where the true value of ρ  equals one.  The table also reports histograms from 

additional Monte Carlo analyses that assume other values for this parameter (0 and .5).  In each 

case, the median estimate is close to the true value.  However, ρ  is not estimated that precisely.  

As discussed earlier, this is because ρ  is identified from only the 15% of weekly observations 

where more than one brand has heterogeneous promotions. 

A key assumption of the model formulation developed in section three is that each brand 

has an identical price across those stores where it has the same promotional activity.  This 

condition is less restrictive than the assumption employed in representative store models, where 

prices are assumed identical across all stores regardless of their promotional activity.  

Nonetheless, even this weaker condition might still be violated in empirical applications. 

 We undertake additional Monte Carlo analysis to investigate whether intra-promotional 

price heterogeneity leads to aggregation bias.  We divide each retail-chain into price zones.  

While prices vary across stores in different zones, price homogeneity assumption (3.2) holds for 

stores within each zone.  For stores in zone z, price for brand b and promotion m in time t is 

determined by 
]

2

2
[ btzm

bt
m
btz epp

ζϕ
+−

= , where btzζ  is i.i.d. ),0( 2ϕN .  That is, each brand’s 

expected price is the average conditional on its promotional activity, with the standard deviation 

of log price equal to ϕ .  The model is simulated using 100 price zones and %15=ϕ .  This 

calibration allows for a significant degree of intra-promotional price heterogeneity since the price 

of super-premium ice cream declines an average of 10% to 30% depending on the type of 

promotion (see Table 1). 

 For each Monte Carlo simulation, we add together the sales data from the 100 price zones 

and then estimate the logit demand models employed above.  Table 7 presents the results from 

this analysis.  While the disaggregated promotion model does not perform quite as well as 
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before, a failure to model intra-promotional price heterogeneity leads only to minor bias; across 

the various estimates, the average percentage difference between the true and estimated values is 

never greater than 6.8%, and is generally much smaller.  The representative store model 

continues to perform worse.  As before, own-price elasticities and promotional effects are 

imprecisely estimated for “Display Only” and “Feature & Display.”  In addition, the average 

impact of these promotions is quite different from the true value.  This comparison demonstrates 

that the disaggregated promotion model is a dramatic improvement over the representative store 

framework, and can be successfully applied even when there is significant price variation across 

stores with the same promotional activity. 

V. Conclusion 

 Demand estimation using aggregate data often leads to biased results.  However, only 

limited solutions for avoiding aggregation bias currently exist.  They either have informational 

requirements that go beyond what is typically available, or fail to fully control for promotional 

heterogeneity across stores.  Due to these shortcomings, practitioners continue to rely on 

representative store aggregate demand models that ignore inter-store promotional heterogeneity, 

and which are inconsistent with adding up from consumer-level demand.  Previous research 

demonstrates these are the primary factors leading to aggregation bias. 

 We show how to avoid these leading determinants of aggregation bias.  Our framework 

generalizes beyond the representative store paradigm by explicitly modeling heterogeneous store 

types.  An aggregate demand model consistent with store-level heterogeneity is constructed by 

adding up demand across each type of store.  This formulation requires the fraction of stores of 

each type, which we show how to estimate using information included in the scanner datasets 

produced by the major vendors, ACNielsen and IRI. 

 The presented empirical application demonstrates how to apply our proposed 

methodology to extant aggregate demand models.  We not only show how to avoid aggregation 

bias, but also obtain results that are more precisely estimated.  This is confirmed by Monte Carlo 
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analysis that demonstrates our framework outperforms a counterpart model based on the 

representative store paradigm.  Our results show there are significant gains to explicitly modeling 

inter-store marketing-mix heterogeneity when estimating aggregate demand, and using our 

proposed methodology researchers can easily do so. 
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Table 1 

Summary Statistics 

Brand A
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
% of Unit Sales 81.5% 0.7% 15.6% 2.2%
% of Stores 92.6% 0.4% 6.5% 0.5%
Avg. Normalized Price $1.00 $0.89 $0.74 $0.73

Brand B
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
% of Unit Sales 68.8% 1.1% 25.7% 4.4%
% of Stores 87.6% 0.6% 10.6% 1.2%
Avg. Normalized Price $1.00 $0.90 $0.71 $0.70

Brand C
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
% of Unit Sales 76.0% 0.5% 20.1% 3.4%
% of Stores 89.2% 0.3% 9.6% 0.9%
Avg. Normalized Price $1.00 $0.91 $0.75 $0.76

Brand D
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
% of Unit Sales 77.0% 0.6% 20.0% 2.4%
% of Stores 93.1% 0.2% 6.2% 0.5%
Avg. Normalized Price $1.00 $0.91 $0.68 $0.66  

Notes:  N=3,520, corresponding to a panel of 11 city-chain combinations, 80 weeks, and 4 brands.  After disaggregating by 
promotional activity, the dataset contains 4,332 observations. 
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Table 2 

Parameter Estimates 

Model 1: Disaggregated Random Coefficients Logit Model

Mean Coefficients:
Intercept Price

No Promotion -0.61
(0.05)

Display Only 0.60 -0.79
(0.42) (0.12)

Feature Only 0.83 -1.13
(0.28) (0.09)

Feature & Display 2.40 -1.34
(0.37) (0.13)

Standard Deviation of Random Coefficients:

Price 0.13
(0.08)

Display Only 1.01
(0.53)

Feature Only 1.71
(0.18)

Feature & Display 1.22
(0.42)

Model 2: Standard Random Coefficients Logit Model

Mean Coefficients:
Intercept Price

No Promotion -0.59
(0.04)

Display Only -0.60 1.22
(2.77) (0.91)

Feature Only 1.07 -1.03
(0.27) (0.09)

Feature & Display 6.90 -2.44
(1.58) (0.61)

Standard Deviation of Random Coefficients:

Price 0.06
(0.10)

Display Only 1.29
(0.64)

Feature Only 0.96
(0.28)

Feature & Display 0.04
(0.87)  

Notes:  Standard errors are reported in parentheses.  Model 1: N=4,332, log-likelihood=-335.87, and RMSE=.34.  Model 2: 
N=3,520, log-likelihood=456.34, and RMSE=.21. 
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Table 3 

Average Percentage of Stores on Promotion  

No
Promotion

Display
Only

Feature
Only

Feature & 
Display

Brand A 93.0% 2.5% 69.9% 8.9%

Brand B 98.2% 4.9% 87.0% 12.6%

Brand C 90.2% 2.3% 78.5% 11.1%

Brand D 99.4% 5.6% 89.9% 12.0%  
Notes:  For each calculation, the data sample is restricted to those observations where at least one store has the given type of 

promotional activity for that brand. 
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Table 4 

Estimated Own- and Cross-Brand Effects 

Disaggregated Random Coefficients Logit Model Standard Random Coefficients Logit Model

Own-Price Elasticity by Promotion Own-Price Elasticity by Promotion
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
Brand A -1.62 -1.87 -1.84 -2.27 -1.75 0.76 -1.88 -3.24

(0.07) (0.24) (0.15) (0.23) (0.07) (0.62) (0.16) (0.77)

Brand B -1.66 -1.97 -1.90 -2.29 -1.66 1.30 -1.76 -3.14
(0.06) (0.24) (0.15) (0.22) (0.07) (1.03) (0.15) (0.68)

Brand C -1.56 -1.81 -1.72 -2.22 -1.60 0.89 -1.72 -3.20
(0.07) (0.23) (0.14) (0.22) (0.07) (0.69) (0.16) (0.78)

Brand D -1.81 -2.32 -2.15 -2.69 -1.85 1.54 -2.05 -4.30
(0.08) (0.28) (0.18) (0.25) (0.09) (1.18) (0.17) (0.94)

Cross-Price Elasticities Cross-Price Elasticities
In response to a price increase by: In response to a price increase by:

Brand A Brand B Brand C Brand D Brand A Brand B Brand C Brand D
Brand A -1.62 0.07 0.13 0.02 -1.75 0.04 0.07 0.01

(0.07) (0.01) (0.03) (0.00) (0.07) (0.01) (0.02) (0.00)

Brand B 0.21 -1.66 0.16 0.03 0.11 -1.66 0.10 0.02
(0.03) (0.06) (0.03) (0.01) (0.03) (0.07) (0.03) (0.01)

Brand C 0.13 0.05 -1.56 0.02 0.07 0.03 -1.60 0.01
(0.03) (0.01) (0.07) (0.00) (0.02) (0.01) (0.07) (0.00)

Brand D 0.16 0.06 0.14 -1.81 0.09 0.04 0.08 -1.85
(0.03) (0.01) (0.03) (0.08) (0.02) (0.02) (0.02) (0.09)

Own-Brand Promotional Effects Own-Brand Promotional Effects
Display

Only
Feature

Only
Feature & 

Display
Display

Only
Feature

Only
Feature & 

Display
Brand A 0.00% 53.1% 108.2% 214.3% 0.00% 1914.5% 125.1% 922.2%

(0.00%) (7.7%) (8.6%) (15.6%) (0.00%) (315.7%) (8.5%) (199.1%)

Brand B 0.00% 67.4% 183.3% 343.8% 0.00% 2768.0% 148.9% 1324.2%
(0.00%) (10.6%) (10.9%) (27.6%) (0.00%) (681.9%) (10.9%) (339.9%)

Brand C 0.00% 44.9% 89.9% 180.2% 0.00% 1584.8% 100.6% 642.1%
(0.00%) (7.4%) (5.5%) (12.2%) (0.00%) (283.0%) (5.7%) (137.1%)

Brand D 0.00% 69.2% 299.2% 527.0% 0.00% 8114.0% 234.9% 2792.4%
(0.00%) (19.5%) (22.0%) (74.1%) (0.00%) (2206.6%) (25.1%) (968.0%)

Notes:  Standard errors are reported in parentheses. 
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Table 5 

Monte Carlo Results 

Average Percent Difference
Disaggregated Logit Model

Average Percent Difference
Standard Logit Model

Own-Price Elasticity by Promotion Own-Price Elasticity by Promotion
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
Brand A 0.09% 0.03% 0.00% 0.01% 0.04% -0.10% -0.71% -8.11%

(3.11%) (4.32%) (4.79%) (5.15%) (3.77%) (79.07%) (6.73%) (38.48%)
Brand B 0.09% 0.02% 0.00% -0.01% 0.05% 0.35% -0.63% -7.33%

(3.11%) (4.31%) (4.73%) (5.05%) (3.77%) (79.34%) (6.67%) (37.92%)
Brand C 0.09% 0.03% -0.01% 0.00% 0.05% 0.04% -0.70% -7.97%

(3.11%) (4.33%) (4.79%) (5.18%) (3.77%) (79.23%) (6.75%) (38.70%)
Brand D 0.09% 0.02% 0.00% -0.02% 0.05% 0.70% -0.61% -6.92%

(3.11%) (4.31%) (4.74%) (5.07%) (3.77%) (79.69%) (6.69%) (38.10%)

Cross-Price Elasticities Cross-Price Elasticities
In response to a price increase by: In response to a price increase by:

Brand A Brand B Brand C Brand D Brand A Brand B Brand C Brand D
Brand A 0.09% 0.06% 0.09% 0.03% 0.04% -0.13% 0.05% -0.11%

(3.11%) (3.42%) (3.37%) (3.37%) (3.77%) (4.07%) (4.07%) (4.00%)
Brand B 0.06% 0.09% 0.09% 0.03% 0.19% 0.05% 0.05% -0.11%

(3.31%) (3.11%) (3.37%) (3.37%) (4.01%) (3.77%) (4.07%) (4.00%)
Brand C 0.06% 0.06% 0.09% 0.03% 0.19% -0.13% 0.05% -0.11%

(3.31%) (3.42%) (3.11%) (3.37%) (4.01%) (4.07%) (3.77%) (4.00%)
Brand D 0.06% 0.06% 0.09% 0.09% 0.19% -0.13% 0.05% 0.05%

(3.31%) (3.42%) (3.37%) (3.11%) (4.01%) (4.07%) (4.07%) (3.77%)

Own-Brand Promotional Effects Own-Brand Promotional Effects
Display

Only
Feature

Only
Feature & 

Display
Display

Only
Feature

Only
Feature & 

Display
Brand A NaN -0.81% 0.11% -0.25% NaN 56.52% 2.76% 26.60%

NaN (6.58%) (3.65%) (3.41%) NaN (112.37%) (5.06%) (30.58%)
Brand B NaN -0.83% 0.09% -0.26% NaN 60.44% 2.38% 23.56%

NaN (6.83%) (3.55%) (3.45%) NaN (121.24%) (4.99%) (27.34%)
Brand C NaN -0.92% 0.11% -0.26% NaN 63.77% 2.91% 29.06%

NaN (7.51%) (3.85%) (3.73%) NaN (127.13%) (5.32%) (34.54%)
Brand D NaN -0.92% 0.10% -0.24% NaN 67.45% 2.32% 23.15%

NaN (7.64%) (3.36%) (3.39%) NaN (133.36%) (4.74%) (27.27%)  
Notes:  The table reports the average percent difference between the true and estimated values across the 5,000 Monte Carlo 

simulations.  The standard deviation of the percent difference is reported in parentheses. 
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Table 6 

Monte Carlo Results, Histograms for Parameter ρ  
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Notes:  For each value of ρ , the table reports histograms from 5,000 Monte Carlo simulations. 
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Table 7 

Monte Carlo Results, Allowing for Intra-Promotional Price Heterogeneity 

Average Percent Difference
Disaggregated Logit Model

Average Percent Difference
Standard Logit Model

Own-Price Elasticity by Promotion Own-Price Elasticity by Promotion
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
No

Promotion
Display

Only
Feature

Only
Feature & 

Display
Brand A 2.88% 4.27% 5.09% 5.74% 2.63% 7.77% 4.22% -2.98%

(3.32%) (4.63%) (5.29%) (5.80%) (3.97%) (84.30%) (7.58%) (42.34%)

Brand B 2.79% 4.10% 4.71% 5.07% 2.55% 8.30% 3.94% -2.70%
(3.32%) (4.61%) (5.22%) (5.64%) (3.97%) (84.60%) (7.49%) (41.46%)

Brand C 2.88% 4.27% 5.09% 5.72% 2.63% 7.94% 4.24% -2.84%
(3.32%) (4.64%) (5.31%) (5.83%) (3.97%) (84.52%) (7.60%) (42.60%)

Brand D 2.77% 4.06% 4.61% 4.86% 2.53% 8.74% 3.86% -2.39%
(3.32%) (4.61%) (5.23%) (5.64%) (3.97%) (85.04%) (7.50%) (41.62%)

Cross-Price Elasticities Cross-Price Elasticities
In response to a price increase by: In response to a price increase by:

Brand A Brand B Brand C Brand D Brand A Brand B Brand C Brand D
Brand A 2.88% -0.18% -0.43% -0.48% 2.63% -0.60% -0.68% -0.83%

(3.32%) (3.53%) (3.45%) (3.51%) (3.97%) (4.17%) (4.13%) (4.12%)

Brand B -0.55% 2.79% -0.43% -0.48% -0.62% 2.55% -0.68% -0.83%
(3.45%) (3.32%) (3.45%) (3.51%) (4.11%) (3.97%) (4.13%) (4.12%)

Brand C -0.55% -0.18% 2.88% -0.48% -0.62% -0.60% 2.63% -0.83%
(3.45%) (3.53%) (3.32%) (3.51%) (4.11%) (4.17%) (3.97%) (4.12%)

Brand D -0.55% -0.18% -0.43% 2.77% -0.62% -0.60% -0.68% 2.53%
(3.45%) (3.53%) (3.45%) (3.32%) (4.11%) (4.17%) (4.13%) (3.97%)

Own-Brand Promotional Effects Own-Brand Promotional Effects
Display

Only
Feature

Only
Feature & 

Display
Display

Only
Feature

Only
Feature & 

Display
Brand A NaN -3.22% -5.23% -6.09% NaN 64.74% -2.65% 19.53%

NaN (6.25%) (3.38%) (3.22%) NaN (110.31%) (4.68%) (28.39%)

Brand B NaN -3.07% -4.05% -5.13% NaN 71.06% -1.77% 18.28%
NaN (6.53%) (3.36%) (3.26%) NaN (121.74%) (4.74%) (26.09%)

Brand C NaN -4.18% -5.65% -6.78% NaN 70.77% -2.95% 20.73%
NaN (7.01%) (3.53%) (3.47%) NaN (122.26%) (4.88%) (31.49%)

Brand D NaN -4.30% -3.73% -4.73% NaN 73.70% -1.53% 18.45%
NaN (7.03%) (3.21%) (3.25%) NaN (126.93%) (4.54%) (26.33%)  

Notes:  The table reports the average percent difference between the true and estimated values across the 5,000 Monte Carlo 
simulations.  The standard deviation of the percent difference is reported in parentheses. 
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