The Role of Information and Monitoring on Collusion

Christian Rojas University of Massachusetts Amherst

Motivation

- 1. Stylized IO facts on factors affecting collusion:
 - **Monitoring** of cartel members (Stigler)
 - **Demand information** (Tirole)
- 2. Well-known theories inform our design:
 - Green and Porter (1984), GP
 - Finite price wars triggered by low demand
 - Collusion more stable when demand is high
 - Rotemberg and Saloner (1986), RS
 - Price wars observed in high demand
 - Collusion more stable during low demand
- 3. Collusion is one of several equilibria. Which predictions are more plausible?
- 4. Assumptions difficult to control, data difficult to get

Theory: Assumptions

- Homogenous products
- Cournot competition
- Symmetric firms and constant MC
- Infinitely repeated game
- Stochastic (uncertain) demand
 - RS:
 - Uncertain future demand, *except* for t+1 (tomorrow),
 - Perfect monitoring and perfect information on "(t+1)"
 - GP:
 - Uncertainty for all future (and past) demand schedules
 - Imperfect monitoring and imperfect information

Theory: RS Equilibrium

- Demand is stochastic but we all know that tomorrow is "Christmas"
- For a large enough demand shock:

$$\Pi^{D}_{high} - \Pi^{C}_{high} > \frac{\delta}{1 - \delta} E(\Pi^{C}_{i} - \Pi^{NE}_{i})$$

• Collusion is more feasible in "bad times" $\Pi_{L}^{D} - \Pi_{L}^{C} < \frac{\delta}{-----} E(\Pi_{L}^{C} - \Pi_{L}^{N})$

$$\Pi_{low}^{D} - \Pi_{low}^{C} < \frac{1}{1 - \delta} E(\Pi_{i}^{C} - \Pi_{i}^{NE})$$

- Grim-trigger strategy is assumed (but not necessary)
- Other equilibria, e.g. always defect

Theory: GP Equilibrium

- Imperfect monitoring: low profit caused by
- Low demand, or
- Rival's defection
- Equilibrium:
 - "Mafia-like": punishment (finite price war) necessary beyond some suspicion (e.g. price) level.
 - No cheating: low profit only caused by large negative demand shock
 - Length of punishment (N*) set to offset gains from cheating
 - Other equilibria: always defect, longer punishment lengths [N*,∞]

Experimental Design

- Two Quantity choices (L, H), prisoner's dilemma
- 3 Demand states (three payoff matrices):
 - o high (20%) h
 - o medium (60%) m
 - o low (20%) l
- 30 rounds, then game ends with 25% probability
- **3** treatments:
 - FI: demand information + perfect monitoring (RS)
 - M: perfect monitoring
 - IM: imperfect monitoring (GP)

Round

Remaining Time [45]: 27

Probability of Playing the Red Game this Round is 20%

1

20%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is ''A''	26.00 , 26.00	7.50 , 43.00
Your Choice is "B"	43.00 , 7.50	12.50 , 12.50

Probability of Playing the GREEN Game this Round is 60%

60%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is "A"	7.50 , 7.50	2.10 , 12.50
Your Choice is "B"	12.50 , 2.10	3.50 , 3.50

Probability of Playing the ${\color{blue} {\bf BLUE}}$ Game this Round is ${\color{blue} 20\%}$

20%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is ''A''	2.10 , 2.10	0.60 , 3.50
Your Choice is "B"	3.50 , 0.60	1.00 , 1.00

Chance has determined that you will play the "GREEN" game

	Other Player's Choice is "A"	Other Player's Choice is "B"	
Your Choice is "A"	7.50 , 7.50	2.10 , 12.50	
Your Choice is " B "	12.50 , 2.10	3.50, 3.50	

Your Choice C A ΟВ

0K

History Table		

Rou	ind	

20%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is "A"	26.00 , 26.00	7.50 , 43.00
Your Choice is "B"	43.00 , 7.50	12.50 , 12.50

1

60%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is ''A''	7.50 , 7.50	2.10 , 12.50
Your Choice is "B"	12.50 , 2.10	3.50 , 3.50

20%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is ''A''	2.10 , 2.10	0.60 , 3.50
Your Choice is "B"	3.50 , 0.60	1.00 , 1.00

Chance has determined that you will play the "GREEN" game:

The Results of the Round are:

	Other Player's Choice was ''A''	
Your Choice was " B "	12.50 , 2.10	

Your Earnings for this Period are E\$	12.50	Continue

Probability of Playing the **Red** Game this Round is 20%

1

Round

20%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is ''A''	26.00 , 26.00	7.50 , 43.00
Your Choice is "B"	43.00 , 7.50	12.50 , 12.50

Probability of Playing the GREEN Game this Round is 60%

60%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is "A"	7.50 , 7.50	2.10 , 12.50
Your Choice is "B"	12.50 , 2.10	3.50 , 3.50

Probability of Playing the ${\color{blue} {\bf BLUE}}$ Game this Round is ${\color{blue} 20\%}$

20%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is ''A''	2.10 , 2.10	0.60 , 3.50
Your Choice is " B "	3.50 , 0.60	1.00 , 1.00

Please choose the strategy you would like to play for this round:

20%	Other Player's Choice is "A"	Other Player's Choice is "B"	
Your Choice is ''A''	26.00 , 26.00	7.50 , 43.00	
Your Choice is " B "	43.00 , 7.50	12.50 , 12.50	

60%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is "A"	7.50 , 7.50	2.10 , 12.50
Your Choice is " B "	12.50 , 2.10	3.50 , 3.50

20%	Other Player's Choice is "A"	Other Player's Choice is "B"
Your Choice is ''A''	2.10 , 2.10	0.60 , 3.50
Your Choice is "B"	3.50 , 0.60	1.00 , 1.00

After the computer has chosen a game and your counterpart has chosen a strategy, the Results of this Second Practice Round are:

Your Earning:	for this Period in E\$	12.50	Continue

The possible outcomes for this round are:

	Other Player's Choice is "B"
Your Choice was "B"	12.50 , 12.50

	Other Player's Choice is "A"	
Your Choice was "B"	12.50 , 2.10	

Experimental Design

- 464 subjects, 15,000 + obs
- Extensive training: instructions, practice questions, quiz, messages
- Several parameterizations (P1, P2, P3):
 RS:
 - Incentive to collude in *medium* and *low* demand (P1)
 - Incentive to collude in *all* demand states (P2)
 - GP: not feasible (P1); punishment length, N*=3, periods (P2)
- Robustness checks: control for risk aversion (P3), different demand draws (P2b)

Results (Parameterization 1)

Results: Information and Monitoring

Treatment	Dependention	Frequency of	Frequency of	
Traiment	r ar anneter ization	Cooperation*	Collusion**	
Eull Information	1	0.72 (0.45)	0.51 (0.50)	
Full Information	2	0.83 (0.38)	0.71 (0.46)	
	1	0.76 (0.42)	0.59 (0.49)	
Monitoring	2	0.84 (0.37)	0.71 (0.46)	
	1	0.63 (0.48)	0.31 (0.46)	
Imperfect Monitoring	2	0.66 (0.47)	0.41 (0.49)	

*Either player chooses *L*. ** *Both* players chose *L*.

Results: Information and Monitoring

 Frequencies are different across all treatments in both parameterizations:

- Information does not improve collusion, it can even hamper it
 - This is due to the theoretical incentives

$$E(\mathbf{P}_{s}^{D} - \mathbf{P}_{s}^{NE}) \leq \frac{d}{1 - d} [E(\mathbf{P}_{s}^{C} - \mathbf{P}_{s}^{NE})]$$

- Monitoring always increases collusion
- This is confirmed in robustness checks treatments

Results FI Treatment (RS theory)

Results: RS (FI treatment)

Domand State	п	Freq.	Freq.	
Demand State	P	Coop.*	Collusion**	
$\mathbf{H} \sim \mathbf{h} \left(\mathbf{h} \right)$	1	0.58 (0.49)	0.43 (0.50)	
Hign (n)	2	0.80 (0.40)	0.67 (0.47)	
	1	0.78 (0.42)	0.56 (0.50)	
Medium (<i>m</i>)	2	0.85 (0.36)	0.73 (0.44)	
	1	0.79 (0.41)	0.59 (0.49)	
LOW (l)	2	0.90 (0.30)	0.77 (0.42)	

Results: RS (FI treatment)

- Does RS strategy explain data better than other strategies?
 - Random strategy
 - "Tit-for-Tat" strategy
 - Finite punishment strategies (after defection)
 - Grim strategy (after defection)
- Indicator variable determines the "theoretical" state (coop=1 or dev=0) for each strategy (an "automaton")
- Probit model of actual choice (coop=1, dev=0) on "theoretical" state
- 3. Likelihood-ratio tests wrt random strategy

Results: RS (FI treatment), P1							
Parameter	Random	RS	tt	P-2	P-3	P-6	P- ∞
α	-0.80***	-0.66	-0.97*	-0.93**	-0.85**	-0.86**	-0.69*
	(0.43)	(0.46)	(0.36)	(0.39)	(0.39)	(0.35)	(0.16)
γ_1		0.92*					
		(0.14)					
γ_2			0.56*				
			(0.12)				
γ_3				0.37*	0.23**	0.53*	2.39*
				(0.11)	(0.12)	(0.14)	(0.24)
ψ	2.40*	2.56*	2.03*	2.20*	2.20*	1.98*	0.69*
	(0.52)	(0.53)	(0.43)	(0.46)	(0.45)	(0.41)	(0.23)
r	0.69*	0.72*	0.60*	0.65*	0.65*	0.59*	0.69*
LL	-450.84	-427.84	-440.41	-445.30	-449.17	-444.16	(-422.07)
LR Test	N/A	46.00	20.85	11.08	3.34	13.35	57.53
(p-value) [†]		(<0.01)	(<0.01)	(<0.01)	(0.07)	(<0.01)	(<0.01)

Results: RS (FI treatment)

- Strategies implied by RS equilibrium seem supported by data
- Grim strategy appears to explain data best
 - Important: grim strategy is assumed by RS to derive their predictions
- These are tests on *individual* choices
- Test on outcomes:
 - Parm. 1: 54% (RS), 51% (always collude), 29% (always defect), 21% (H,L or L,H)
 - Parm. 2: 71% (always collude), 65% (RS), 17% (always defect), 12% (H,L or L,H)

Results IM Treatment (GP theory)

Results: GP (IM treatment)

- Cooperation is lower during price war periods predicted by GP (especially for infinite price wars)
- How does GP do against other individual (complex) strategies?
- Random strategy, and "threshold" strategies based on noisy signal (price)
 - 1. One threshold:
 - Deviation triggered by low price; reversion to collusion after fixed periods or never (grim strategy)
 - 2. Two thresholds:
 - Deviation triggered by a low price; reversion to collusion after a high price

Results: GP (IM treatment), P2

	Random	GP_N		One-Threshold, N=punishment period		One-Thresh N=punishment		Two-Th	resholds
				<i>k</i> =	$= p_1$	$k = p_2$	$k^{down} = p_1$	$k^{down} = p_1$	
		N=3	N=∞	N=8	$N=\infty$	$N = \infty$	$k^{up} = p_3$	$k^{up} = p_4$	
γ	N/A	0.33*	1.30*	0.74*	1.33*	1.45*	1.25*	1.33*	
ĹL	-549.8	-543.6	-523.7	-526.2	-502.3	-523.6	-503.9	-502.3	
LR [†] p-value	N/A	12.50 <0.01	52.25 <0.01	47.22 <0.01	95.02 <0.01	52.42 <0.01	91.78 <0.01	95.02 <0.01	

Results: GP (IM treatment)

- Random strategy can be rejected in favor of GP equilibrium
- Grim strategy appears to explain data best
- There are trigger strategies, but different than predicted by GP
 - Longer duration, or duration determined by signal
 - Not necessarily triggered by the predicted signals
- Test on *outcomes:*
 - Parm. 1: 72% (GP∞), 50% (GP3), 37% (always defect)
 - Parm. 2: 62% (GP∞), 51% (GP3), 33.6% (always defect)

Conclusion

- Monitoring appears to matter the most in this setting
- Less information may increase collusion
- Data support RS and GP predictions, but infinite price wars appear more likely
- Experiments can help us sort out the likely predictions from the unlikely ones
- Merger guidelines: factors affecting collusion
- Observed data vs. theoretical predictions

Robustness and Caveats

- Risk aversion
 - Controlled for
- Students as subjects
 - Dyer, Kagel, Levin, 1989; Potters van Winden, 2000; Davis and Holt, 1993; Ball and Cech, 1996
- Infinitely repeated game

Parameterization 1

High Demand (*h*), probability: 0.20

			Player 2		
			L	Н	
	er 1	L	26.00, 26.00	7.50, 43.00	
	Play	Н	43.00, 7.50	12.50, 12.50	

Medium Demand (m), probability: 0.60

		Player 2		
		L	Н	
er 1	L	7.50, 7.50	2.10, 12.50	
Play	Н	12.50, 2.10	3.50, 3.50	

Low Demand (*l*): 0.20

		Player 2		
		L	Н	
er 1	L	2.10, 2.10	0.60, 3.50	
Play	Η	3.50, 0.60	1.00, 1.00	

Parameterization 2

High Demand (*h*), probability: 0.20

			Player 2		
			L	Н	
	er 1	L	31.00, 31.00	9.00, 43.00	
	Play	Η	43.00, 9.00	12.50, 12.50	

Medium Demand (m), probability: 0.60

		Player 2		
		L	Н	
er 1	L	9.00, 9.00	2.50, 12.50	
Play	Н	12.50, 2.50	3.50, 3.50	

Low Demand (*l*): 0.20

		Player 2		
		L	Н	
er 1	L	2.50, 2.50	0.70, 3.50	
Play	Н	3.50, 0.70	1.00, 1.00	

Imperfect Public Monitoring

-			High D	emand
			Player 2	
			L	Н
	er 1	L	p_4	p ₃
	Play	Н	P ₃	p ₂

		Medium	Demand
		Player 2	
		L	Н
/er 1	L	p ₃	p ₂
Play	Н	p ₂	p ₁

		High D	emand
		Player 2	
		L	Н
/er 1	L	p ₂	p 1
Play	Н	\mathbf{p}_1	\mathbf{p}_0