

Browser versions carry 10.5 bits of identifying
information on average
[forthcoming blog post]

Technical Analysis by Peter Eckersley

This is part 3 of a series of posts on user tracking on the modern web. You can also read part 1 and
part 2.

Whenever you visit a web page, your browser sends a "User Agent" header to the website saying
what precise operating system and browser you are using. We recently ran an experiment to see to
what extent this information could be used to track people (for instance, if someone deletes their
browser cookies, would the User Agent, alone or in combination with some other detail, be enough
to re-create their old cookie?).

Our experiment to date has shown that the browser User Agent string usually carries 5-15 bits of
identifying information (about 10.5 bits on average). That means that on average, only one person
in about 1,500 (210.5) will have the same User Agent as you. On its own, that isn't enough to recreate
cookies and track people perfectly, but in combination with another detail like an IP address,
geolocation to a particular ZIP code, or having an uncommon browser plugin installed, the User
Agent string becomes a real privacy problem.

User Agents: An Example of Browser Characteristics Doubling As Tracking
Tools

When we analyse the privacy of web users, we usually focus on user accounts, cookies, and IP
addresses, because those are the usual means by which a request to a web server can be associated
with other requests and/or linked back to an individual human being, computer, or local network.

Typical advice for improving your privacy as you surf the web might include blocking or deleting
cookies (and supercookies), and using proxy servers or tools like tor to hide your IP address.

It's not intuitive that a User Agent poses a similar risk to a unique tracking cookie. After all, there
are probably millions of people out there who use the same browser and operating system that you
do. But let's examine the matter more closely. A typical User Agent string looks something like this:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.3)

Gecko/20090824 Firefox/3.5.3 (.NET CLR 3.5.30729)
�

In fact, that was the most common user agent string among browsers visiting the EFF website
during the test period: Firefox 3.5.3 running on Windows XP. There are a lot of things that can vary
inside that string, and those variations can be used to distinguish and track people as they browser
the Web.

https://www.eff.org/deeplinks/2009/09/new-cookie-technologies-harder-see-and-remove-wide
uhttp://en.wikipedia.org/wiki/User_agent
https://www.eff.org/deeplinks/2009/09/online-trackers-and-social-networks
https://www.eff.org/deeplinks/2009/09/new-cookie-technologies-harder-see-and-remove-wide
https://kittens.eff.org/about/staff/peter-eckersley
https://kittens.eff.org/blog-categories/technical-analysis

Our Results to date on User Agent Identifiability

We ran an experiment to measure precisely how identifying the User Agent strings would have been
among a 36-hour anonymized sample of several million requests to the EFF website. The following
table shows different classes of browser, with the number of bits for best and average case User
Agents within that class:

Identifying information in various classes of browsers

Avg. Minimum
�
Browser class identifying identifying (Least identifing user agent)
�

informatio information
�
Modern Mozilla/5.0 (Windows; U; Windows NT 5.1;
Windows 10.3-11.3 bits 4.6 - 5.0 bits en-US; rv:1.9.1.3) Gecko/20090824
Desktops Firefox/3.5.3 (.NET CLR 3.5.30729)
Internet	� Mozilla/4.0 (compatible; MSIE 6.0; Windows

13.2-13.5 bits 6.3 - 7.2 bits
Explorer	� NT 5.1; SV1)

Mozilla/5.0 (Windows; U; Windows NT 5.1;
Firefox 8.6 - 9.4 bits 4.6 - 5.0 bits	� en-US; rv:1.9.1.3) Gecko/20090824

Firefox/3.5.3 (.NET CLR 3.5.30729)
Mozilla/5.0 (Windows; U; Windows NT 5.1;

Chrome 7.5-8.5 bits 5.7 - 6.2 bits en-US) AppleWebKit/532.0 (KHTML, like
Gecko) Chrome/3.0.195.27 Safari/532.0
Mozilla/5.0 (X11; U; Linux i686; en-US;

Linux 11.8-13.15 bits 6.6-7.9 bits rv:1.9.0.14) Gecko/2009090216 Ubuntu/9.04
(jaunty) Firefox/3.0.14
Mozilla/5.0 (X11; U; Linux i686; en-US;

Ubuntu 9.6 - 11.7 bits 6.6 - 7.8 bits rv:1.9.0.14) Gecko/2009090216 Ubuntu/9.04
(jaunty) Firefox/3.0.14
Mozilla/5.0 (X11; U; Linux i686; en-US;

Debian 13.5-15.3 bits 10.50 - 11.7 bits rv:1.9.0.14) Gecko/2009091010 Iceweasel/3.0.6
(Debian-3.0.6-3)
Mozilla/5.0 (Macintosh; U; Intel Mac OS X

Macintosh 8.8-9.3 bits 5.8-5.8 bits 10.5; en-US; rv:1.9.1.3) Gecko/20090824
Firefox/3.5.3
Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_1
like Mac OS X; en-us) AppleWebKit/528.18

iPhone 10.8 - 11.3 bits 8.7 - 9.3 bits
(KHTML, like Gecko) Version/4.0
Mobile/7C144 Safari/528.16
BlackBerry9530/4.7.0.148 Profile/MIDP-2.0

Blackberry 14.7 - 15.5 bits 12.0 - 12.7 bits
Configuration/CLDC-1.1 VendorID/105
Mozilla/5.0 (Linux; U; Android 1.6; en-us; T-
Mobile G1 Build/DRC83) AppleWebKit/528.5+

Android 14.4 - 14.4 bits 12.2-12.4 bits
(KHTML, like Gecko) Version/3.1.2 Mobile
Safari/525.20.1

Methodology

We took a 36 hour sample of anonymized requests to the eff.org web server by hashing the IP
address of each request with a random salt, and throwing away the salt. We then calculated the
amount of identifying information conveyed by each browser. Identifying information is measured

in "bits of entropy", and says how large a crowd the information would reveal you within. Browsers
usually convey between 5 and 15 bits of identifying information, about 10.5 bits on average. 10 bits
of identify information would allow you to picked out of a crowd of 2^10, or 1024 people. 10.5 bits
of information identifies can identify people from crowds of just under 1,448.

Because we did not use cookies or any other mechanism to distinguish between repeat and new
visitors, each measurement of bits of identifying information lies between an upper and lower
bound.1

There are several remarkable facts about this dataset. Overall, it's amazing how identifying User
Agent strings are. 10.5 bits is about one-third of the total information required to identify an
Internet user.

It's also surprising that platforms like Firefox and Ubuntu, which have lower market penetration, are
on average comparable or even less identifying than Windows and MSIE, which have very large
userbases and should therefore have larger crowds to hide in. Part of this may be that visitors to the
EFF website are over-representative of the former groups, but it's also clear that a large part of this
is that Internet Explorer has a very high level of variation in its User Agent strings, with typical
examples looking something like this:

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0;

SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR

3.5.30729; .NET CLR 3.0.30618)
�

All of the different library and component versions there essentially function as partial tracking
tokens.

Conclusions and Further Work

An average browser User Agent string contains around 10.5 bits of identifying information. This is
about one-third of the entropy required to uniquely identify a human being on the planet earth.

It is not clear what low-impact steps can be taken to reduce this privacy risk. The danger with
simply changing the User Agent string to something seemingly innocuous is that it needs to be done
perfectly. Configuring a Blackberry to pretend to be Firefox on Windows is fine, so long as the web
server can't see that it's a Blackberry pretending to be Firefox, since that combination will be unique
or close to it.

The EFF is planning to launch a site hosting further experiments to measure the identifying
information conveyed by other similarly distinctive browser features beside the User Agent string.
Plugins and plugin versions are likely to be the most significant of these, and will probably reduce
entropy by a similar degree to the User Agent string.

1	� One bound is based on a count in which each hashed IP address is counted for only one request; the other bound is
based on treating each hit as a unique browser. In almost all cases, the true amount of identifying information
pertaining to the browser should lie between these two values.

