CRAVATH, SWAINE & MOORE LLP

GEORGE J. GILLESPIE. II THOMAS R. BROME ROBERT D. JOFFE ALLEN FINKELSON RONALD S. ROLEF AUL C. SAUNDERS DOUGLAS D. BROADWATER ALAN C. STEPHENSON MAX R. SHULMAN STUART W. GOLD JOHN W. WHITE JOHN E. BEERBOWER PATRICIA GEOGHEGAN D. COLLIER KIRKHAM MICHAEL L. SCHLER KRIS F. HEINZELMAN B. ROBBINS KIESSLING RÖGER D. TURNER PHILIP A. GELSTON RORY O. MILLSON NEIL P. WESTREICH

FRANCIS P. BARRON RICHARD W. CLARY WILLIAM P. ROGERS, JR. JAMES D. COOPER STEPHEN L. GORDON DANIEL L. MOSLEY GREGORY M. SHAW PETER S. WILSON JAMES C. VARDELL, II ROBERT H. BARON KEVIN J. GREHAN W. CLAYTON JOHNSON STEPHEN S. MADSEN MARC S. ROSENBERG WILLIAM B. BRANNAN LEWIS R. STEINBERG SUSAN WEBSTER TIMOTHY G. MASSAD DAVID MERCADO ROWAN D. WILSON JOHN T. GAFFNEY

Worldwide Plaza 825 Eighth Avenue New York, NY 10019-7475

TELEPHONE: (212) 474-1000 FACSIMILE: (212) 474-3700

> CITYPOINT ONE ROPEMAKER STREET LONDON EC2Y 9HR TELEPHONE: 44-207-453-1000 FACSIMILE: 44-207-860-1150

WRITER'S DIRECT DIAL NUMBER

(212) 474-1564

PETER T BARBUR SANDRA C. GOLDSTEIN DALIL MICHALSKI THOMAS G. RAFFERTY MICHAEL S. GOLDMAN RICHARD HALL FUZABETH CRAVER JULIE A. NORTH STEPHEN L. BURNS KATHERINE B. FORREST KEITH R. HUMMEL DANIEL SLIFKIN JEFFREY A. SMITH ROBERT I. TOWNSEND, I WILLIAM J. WHELAN, I SCOTT A. BARSHAT PHILIP J. BOECKMAN ROGER G. BROOKS WILLIAM V. FOGG FAIZA I SAFED RICHARD J. STARK THOMAS E. DUNN

JULIE T. SPELLMAN RONALD CAMI MARK I. GREENE SARKIS JEBEJIAN JAMES C. WOOLERY DAVID R. MARRIOTT MICHAEL A. PASKIN ANDREW J. PITTS MICHAEL T. REYNOLDS ANTONY L. RYAN GEORGE E. ZOBITZ GEORGE A. STEPHANAKIS

SPECIAL COUNSEL SAMUEL C. BUTLER THOMAS D. BARR

OF COUNSEL ROBERT ROSENMAN CHRISTINE BESHAR

CONFIDENTIAL TREATMENT REQUESTED

April 29, 2004

Carboplatin

Dear Ms. Schenof:

Bristol-Myers Squibb Company ("BMS") submits this letter and the enclosed materials in response to the requests for additional information contained in your letter of April 20, 2004, and made during recent conversations with outside counsel for BMS and/or Teva Pharmaceuticals USA, Inc. ("Teva").

1. <u>Termination</u>.

You asked us to consider modifying the term of Teva's distributorship rights to provide that Teva's distributorship rights expire at the earlier of some period after Teva receives Food and Drug Administration ("FDA") approval of its ANDA (perhaps 30 or 60 days) or June 24, 2005.

The parties addressed this request in Article 9 of the Distribution and Supply Agreement between BMS and Teva, dated April 26, 2004, (the "Distribution and Supply Agreement") submitted to the FTC on April 27, 2004. BMS respectfully refers you to the following specific provisions of the Distribution and Supply Agreement: Sections 9.1.1, 9.5 and 9.6.1(c).

2. <u>Carboplatin ANDA Filers</u>.

You requested that BMS identify, by the form and dose specified in the Agreement, which companies have filed an ANDA for carboplatin.

Enclosed is a list of generic companies that, to BMS's knowledge, have filed ANDAs for carboplatin. BMS does not generally have knowledge of ANDA filings prior to tentative approval unless it receives notice that a company filed an ANDA containing a paragraph IV certification. It is therefore possible that other generic companies have filed ANDAs for carboplatin about which BMS does not have knowledge.

3. <u>BMS's Annual Sales of Paraplatin[®]</u>.

You requested that BMS identify its annual sales of carboplatin.

Enclosed is a chart that provides annual domestic net sales for Paraplatin[®] in lyophilized and solution form, by dose, for 2003. BMS also markets a 600 Mgs solution product. This product launched earlier this year and accordingly no net sales figures for this dosage are included.

4. Claims and Potential Claims that are Resolved by the Agreements.

You requested a copy of any counterclaims asserted by Teva that would be dismissed as part of the resolution of the litigation at issue.

Pharmachemie B.V. ("Pharmachemie") filed three answers in which it asserted counterclaims. In its most recent answer, the Amended Answer and Counterclaim to Consolidated Amended Complaint, dated October 22, 2002, Teva asserted only one counterclaim for declaratory judgment of patent invalidity. A copy of the Amended Answer and Counterclaim to Consolidated Amended Complaint is enclosed.

REDACTED

Pharmachemie has also argued that it could obtain approval of ANDA 76-162 notwithstanding BMS's pending pediatric exclusivity. BMS disagreed, and continues to disagree, with this contention.

The language in the agreements relevant to the resolution of the claims and potential claims of the parties may be found in paragraphs 2, 3 and 4 of the Settlement Agreement between BMS, Teva and Research Corporation Technologies, Inc., dated April 26, 2004, submitted to the FTC on April 27, 2004, and section 2.1.4 of the Distribution and Supply Agreement. You requested information regarding Teva's corporate structure and the relationship between Teva and Pharmachemie.

Teva and Pharmachemie are both subsidiaries of Teva Pharmaceutical Industries Ltd., an Israeli company that does not do business in the United States. Pharmachemie is a European company that does not directly distribute products in the United States and relies upon Teva and others physically to sell and distribute products in the United States.

To aid in the FTC's understanding of the corporate structure of Teva, I am enclosing a printout from Mergent Online that provides additional information concerning Teva Pharmaceutical Industries Ltd.

Confidential treatment of this letter and the enclosed materials is respectfully requested.

Thank you for your consideration and assistance. If you have any questions, please do not hesitate to call me at the number above.

Respectfully,

ichand fark

Richard J. Stark

Anne Schenof, Esq. Bureau of Competition Federal Trade Commission 601 New Jersey Avenue, N.W. Washington, DC 20580

Encls.

FEDERAL EXPRESS

Copies w/ encls. to:

Alan Barr, Esq. Assistant Attorney General Office of the Attorney General 200 Saint Paul Place Antitrust Division, 19th Floor Baltimore, MD 21202-2202 Richard L. Schwartz, Esq. Assistant Attorney General Office of the Attorney General of New York Antitrust Bureau 120 Broadway Suite 26-01 New York, NY 10271

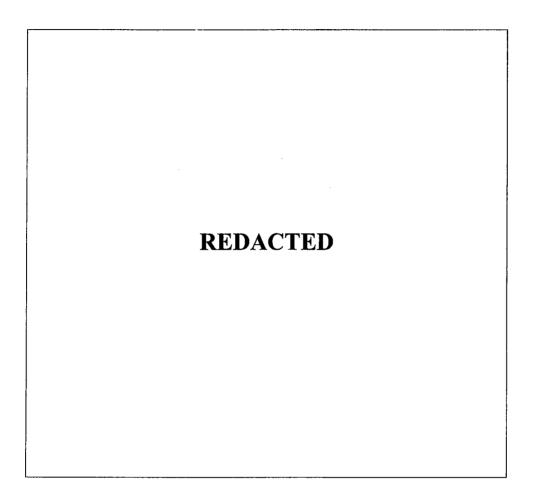
William Shieber, Esq. Assistant Attorney General Antitrust Section Office of the Attorney General 300 W. 15th Street Austin, TX 78701 Alan C. Witten, Esq. Antitrust Section Ohio Attorney General 150 East Gay Street, 20th Floor Columbus, OH 43215-3130

Meredyth Smith Andrus, Esq. Assistant Attorney General Office of the Attorney General Antitrust Division 200 St. Paul Place Baltimore, MD 21202

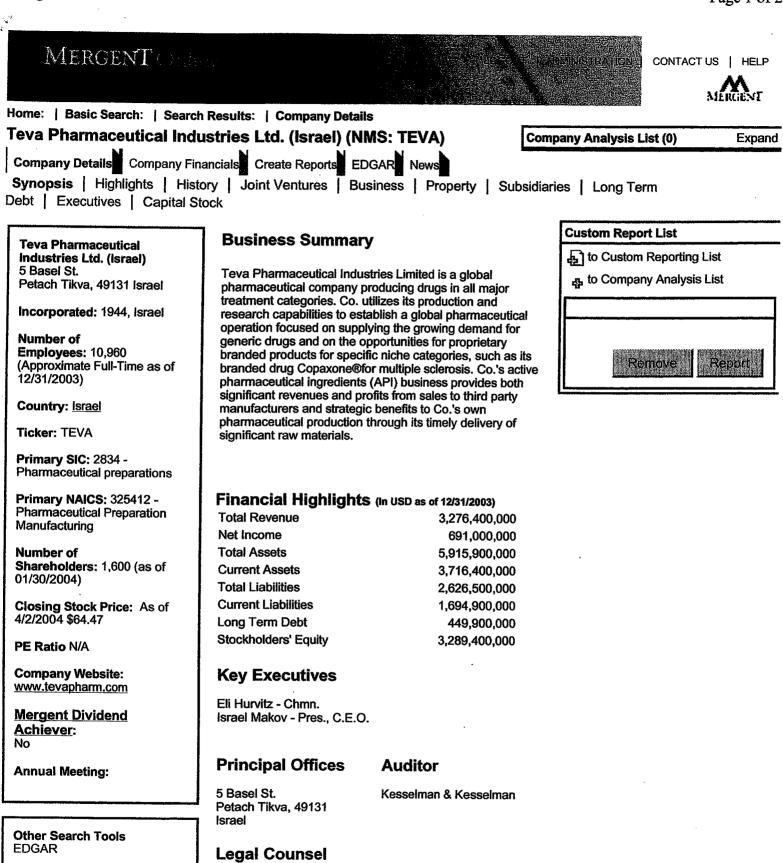
Nicholas J. Weilhammer, Esq. Assistant Attorney General Office of the Attorney General The Capitol, PL 01 Tallahassee, FL 32399

FEDERAL EXPRESS

<u>Carboplatin</u>


Known ANDA Filers

Product Name	Company	ANDA Number	Tentative Approval Date	- I vophilized/. Solution	Source
Caboplatin Injection USP 10 mg/mL, Rx Tentatively Approved	Mayne Pharma	ANDA 76-517	3/30/04	Solution	FDA Website
Carboplatin Injection USP 50, 150 and 450 mg, Rx <i>Tentatively Approved</i>	Faulding Pharmaceutical	ANDA 76-473	4/16/03	Lyophilized	FDA Website
Carboplatin Injection USP 50, 150 or 450 mg, Rx <i>Tentatively Approved</i>	American Pharmaceutical Partners, Inc.	ANDA 76-235	5/22/02	Lyophilized	FDA Website
Carboplatin Injection USP 10 mg/mL, Rx Tentatively Approved	Gensia Sicor Pharmaceuticals, Inc.	ANDA 76-227	8/12/02	Solution	FDA Website
Carboplatin Injection USP 50, 150 or 450 mg, Rx <i>Tentatively Approved</i>	Pharmachemie B.V.	ANDA 76-162	1/14/03	Lyophilized	FDA Website
Carboplatin Injection 10 mg/mL, 5 mL, 15 mL and 45 mL vials Status Unknown	Pharmachemie B.V.	ANDA 76-292	N/A	Solution	Notice of Paragraph IV Certification
Carboplatin Injection USP 10 mg/mL, Rx Tentatively Approved	Bedford Laboratories	ANDA 76-039	6/6/03	Solution	FDA Website
Carboplatin Injection USP 50, 150 & 450 mg, Rx <i>Tentatively Approved</i>	Bedford Laboratories	ANDA 76-099	9/18/02	Lyophilized	FDA Website
Carboplatin Injection Dosage Unknown Status Unknown	Spectrum Pharmaceuticals, Inc.	Unknown	N/A	Unknown	Public Press Release


<u>Paraplatin[®]</u>

,

2003 Domestic Net Sales

CONFIDENTIAL

Tulchinsky - Stern & Co.; Willkie Farr & Gallagher

Pricing Information

1, "

Ticker:	TEVA	Excha	nge: NMS	
Closing	Price As of	4/2/2004 \$64	.47	
	Weeks End 04/03/2004	ing 03/27/2004	03/20/2004	03/13/2004
Open Price High Price Low Price Last	64.07 64.95 61.86	64.30 62.75 61.20	64.18 63.88 62.22	63.44 65.40 61.79
Price Total	62.49	61.24	62.45	64.66
		8,375,200	8,421,200	12,287,000
30 days	62	63	64	65
	55.14 - 67.20			

COPYRIGHT © 2003 MERGENT | PRIVACY POLICY | FEEDBACK

History

1.3

Incorporated in Israel on Feb. 13, 1944. Present Co. established in 1976 upon the merger of three companies, Teva, Zori and Assia, which were originally established in Israel in the 1930's.

In Mar. and Apr. 1980, Co. acquired Ikapharm Ltd., a pharmaceutical manufacturer (merged effective Mar. 31, 1982), and Dr. N. Preminger Ltd. (now Promedico Ltd.) an importer of medicines and medical equipment.

In Feb. 1986, Co., through its U.S. joint venture company, acquired Lemmon Company, a U.S. producer and marketer of generic drugs.

On Apr. 10, 1987, Co. sold Promedico to foreign investors for US\$4,000,000.

On Jan. 21, 1988, Co. purchased from Baxter-International Inc., a U.S. company, all of the issued and outstanding shares of Travenol Laboratories (Israel) Ltd. The shares of the above two companies were purchased for a total of approx. US\$8,200,000.

On Mar. 29, 1988, Co. acquired the remaining outstanding shares of Migada Ltd. and Adam Ltd., Israeli companies which were previously 45% owned and 50% controlled, for approx. US\$1,000,000.

On Oct. 11, 1988, Co. acquired approx. 98% of the equity of the issued and outstanding shares of Abic Ltd., an Israeli corporation which, directly and indirectly, through subsidiaries, manufactures and markets pharmaceutical and veterinary products, for approx. US\$26,6000,000.

In 1989, Travenol Laboratories and Migada Ltd., subsidiaries of Co., were merged.

In Jan. 1991, Co. acquired the remaining 49.8% interest in TAG Pharmaceuticals, Inc. from W.R. Grace &Co. for US\$20,000,000, plus up to US\$4,000,000 payable based on the operating results of TAG until the year 2000.

In 1992, Co. acquired 100% of the share capital of Prochemia S.r.l. and is subsidiaries for a total payment of US\$23,200,000.

In 1994, Co. acquired 34% of the share capital of Prographarm Laboratories for consideration of US\$7,200,000 and 30% of the share capital of Portman Pharmaceuticals Inc. in consideration of US\$1,500,000.

In Oct. 1995, Co. acquired Industrie Chimiche Italiane S.p.A.

In Nov. 1995, Co. acquired 78% of Biogal Pharmaceutical Works.

In 1996, Co. acquired Approved Prescription Services Ltd., a U.K. generic drug company, for US\$52.2 million.

On July 1, 1998, Co. acquired full ownership and control of Pharmachemie N.V. for approx. US\$83 million.

On Sept. 21, 1999, Co. acquired Copley Pharmaceutical, Inc. for US\$220 million (including acquisition costs).

In Apr. 2000, Co. acquired Novopharm Ltd. In consideration, the vendor was issued 2.1 million ordinary shares of Co. and 6.3 million special shares that are exchangeable into ordinary shares of Co. at his discretion on a one-to-one ratio.

On Dec. 31, 2000, Co. acquired the shares in a subsidiary of Novopharm from the minority shareholders in this subsidiary, for a total amount of US\$12 million.

In June 2002, Co. acquired full control and ownership of Honeywell Pharmaceutical Fine Chemicals S.r.l. (subsequently renamed Teva Pharmaceutical Fine Chemicals S.r.l.) in Italy and Bayer Classics S.A. (subsequently renamed Teva Classics S.A.) in France, as well as a shareholders' loan of US\$34 million granted to the acquired company by the vendor. Total

consideration paid for the two acquisitions (including the shareholder's loan mentioned above and acquisition costs) was US\$168 million in cash. Co. accounted for these acquisitions by the purchase method.

On Jan. 22, 2004, Co. acquired Sicor Inc. The purchase price paid by Co. amounted to approximately \$3,460,000,000 in a combination of cash and Co. shares.

Joint Ventures

». •

4.º

Subsidiaries

	% Owned	Country
Novopharm Ltd.		Canada
Plantex USA, Inc.	-	United States
Teva Neuroscience, Inc.		United States
Teva Pharamceuticals USA, Inc. Approved Prescription Services Limited	-	United States
Biogal Pharmaceutical Works Ltd.	99.30%	United Kingdom Hungary
Gry Pharma GmbH	99.3078	Germany
Human Pharmaceutical Works Co. Ltd.	99.98%	Hungary
Orphalic11 BV		Netherlands
Pharmachemie Group		Netherlands
Prosintex Industrie Chimiche Italiane S.r.1.		Italy
Teva Pharmaceuticals Europe B.V.		Netherlands
Teva Classics S.A. Teeva Sante SAS		France
Teva Pharmaceutical Fine Chemicals s.r.l.	_ 	France
Teva Pharma Italia S.r.l.		Jialy Italy
Abic Ltd.		
Assia Chemical Industries Ltd.		-
Abic Biological Laboratories Teva Ltd.		
• Plantex Ltd.	_	
Salomon, Levin and Elstein Ltd.		🗝 i sha sha she she she
Teva Medical Ltd.	 Side COARDING COARDIN	
Genchem Pharma Ltd.		United States
Sicor Inc. Sicor Pharmaceuticals Sales, Inc.	-	United States
Sicor Pharmaceuticals, Inc.		United States United States
Rakepoll Holding B.V.		Netherlands
Sicor Biotech UAB		Lithuania
Sicor Europe S.A.	an teknologi dalatan mananan manang da	Switzerland
Sicor Societa Italiana Corticosteroidi S.p.A.		Italy
Tianjin Hualida Biotechnology Company Ltd		China (Peoples Rep. Of)
Lemery S.A. de C.V.		Mexico
Sicor de Mexico S.A. de C.V.		Mexico
Sicor Latinoamerica S.A. de C.V.	-	Mexico

STERNS & WEINROTH A Professional Corporation 50 West State Street Suite 1400 Trenton, NJ 08607 KC-0848 Attorneys for Defendant Pharmachemie B.V.

UNITED STATES DISTRICT COURT FOR THE DISTRICT OF NEW JERSEY

• • • •

BRISTOL-MYERS SQUIBB COMPANY and RESEARCH CORPORATION TECHNOLOGIES, INC.

Plaintiffs,

CIVIL ACTION No. 01-3751 (MLC) (Civil Action No. 02-1270 has been consolidated herewith)

v.

PHARMACHEMIE B.V.

Defendant.

AMENDED ANSWER AND COUNTERCLAIM TO CONSOLIDATED AMENDED COMPLAINT

Defendant Pharmachemie B.V. ("Pharmachemie") answers the correspondingly numbered paragraphs of plaintiffs' Amended Complaint for Patent Infringement as follows:

1. Pharmachemie is without knowledge or information sufficient to form a belief as to the truth of the allegations of Paragraph 1, except that it believes that Bristol-Myers Squibb Company ("BMS") is a Delaware corporation with a principal place of business in New York, New York.

2. Pharmachemie is without knowledge or information sufficient to form a belief as to the truth of the allegations of Paragraph 2, except that it believes that Research Corporation Technologies, Inc. ("RCT") is a Delaware corporation with a principal place of business in Tucson, Arizona.

3. Admits.

4. Admits.

5. Pharmachemie admits that it designated an agent for service of process in New Jersey in connection with the originally filed Civil Action No. 01-3751 (MLC) and further admits, for purposes of this action only, that Pharmachemie is subject to personal jurisdiction in this judicial district and that venue is proper in this Court under 28 U.S.C. §§ 1391(c) and 1400(b). Pharmachemie denies the remaining allegations of Paragraph 5.

6. Pharmachemie admits that United States Patent No. 4,657,927 (hereinafter the "'927 patent") issued on April 14, 1987, and that copies of the '927 patent and Certificates of Correction are attached to the Amended Complaint as Exhibit A. Pharmachemie is without knowledge or information sufficient to form a belief as to the truth of the remaining allegations of Paragraph 6.

7. Pharmachemie is without knowledge or information sufficient to form a belief as to the truth of the allegations of Paragraph 7.

8. Pharmachemie is without knowledge or information sufficient to form a belief as to the truth of the allegations of Paragraph 8.

9. Pharmachemie admits that it filed an abbreviated new drug application ("ANDA") with the United States Food and Drug Administration ("FDA") for approval to market powder for injection products containing carboplatin as their active ingredient; that its ANDA included a certification under § 505(j)(2)(A)(vii)(IV) of the Federal Food, Drug and Cosmetic Act that the '927 patent is invalid, unenforceable, or will not be infringed; and that RCT and BMS received notice of the certification on June 26, 2001. Pharmachemie denies the remaining allegations of Paragraph 9.

10. Pharmachemie admits that it filed an ANDA with the FDA for approval to market injection products containing carboplatin as their active

ingredient (together with the powder for injection products which are the subject of ¶ 9 above referred to as "Pharmachemie Carboplatin Products"); that its ANDA included a certification under § 505(j)(2)(A)(vii)(IV) of the Federal Food, Drug and Cosmetic Act that the '927 patent is invalid, unenforceable, or will not be infringed; and that BMS received notice of the certification on February 25, 2002. Further answering, Pharmachemie states that RCT received notice of the certification on February 27, 2002. Pharmachemie denies the remaining allegations of Paragraph 10.

11. Pharmachemie admits that if the '927 patent is valid, its filing of the ANDAs referenced in ¶¶ 9 and 10 constitutes an act of infringement of at least one claim of the '927 patent pursuant to 35 U.S.C. § 271(e)(2)(A) entitling plaintiffs to an order that the effective date of the approval of both of Pharmachemie's ANDAs be a date which is not earlier than the April 14, 2004 expiration date of the '927 patent. Pharmachemie denies the remaining allegations of Paragraph 11.

FIRST AFFIRMATIVE DEFENSE

Claims 1 and 3 of the '927 patent are invalid and unenforceable against Pharmachemie by reason of obviousness-type double patenting.

COUNTERCLAIM

DECLARATORY JUDGMENT OF PATENT INVALIDITY

For its counterclaim Pharmachemie alleges the following:

1. Pharmachemie is a Netherlands corporation with a principal place of business in Haarlem, The Netherlands.

2. On information and belief, BMS is a Delaware corporation with a principal place of business in New York, New York.

3. On information and belief, RCT is a Delaware corporation with a principal place of business in Tucson, Arizona.

4. Subject matter jurisdiction exists pursuant to 28 U.S.C. § 1331 and § 1338.

5. Pharmachemie incorporates by reference the statements in paragraph 5 of its Answer establishing venue over this action in this Court.

THE RCT/BMS PATENTS

6. U.S. Patent No. 4,140,707 (the "'707 patent"), issued on February 20, 1979, identifies the inventors of that patent as Michael Cleare, James Hoeschele, Barnett Rosenberg, and Loretta VanCamp. The patent was subject to reexamination and a Reexamination Certificate issued on December 19, 1989. The term of the '707 patent was extended by 916 days under 35

U.S.C. § 156 in response to an application submitted to the United States Patent and Trademark Office by RCT based on the period of time required by FDA to review BMS' application for approval to market its carboplatin products in the United States. Copies of the '707 patent, the Reexamination Certificate and the Certificate Extending Patent Term are attached as Exhibit A.

7. The '707 patent expired on August 24, 1998.

8. Claims 1, 5, 6 and 7 of the '707 patent, after Reexamination, claim diammineplatinum(II) dicarboxylate compounds. Claim 7 is limited to carboplatin.

9. The '927 patent issued on April 14, 1987, and identifies the inventors of that patent as the same inventors identified in the '707 patent: Michael Cleare, James Hoeschele, Barnett Rosenberg, and Loretta Van Camp. Unless declared invalid or unenforceable, the '927 patent will continue in force until April 14, 2004, when it is currently scheduled to expire.

10. Claims 1 and 3 of the '927 patent generally claim compositions containing, and a method of treatment using, compounds, including those claimed in claims 1, 5, 6 and 7 of the '707 patent, to be administered parenterally. More specifically, claim 1 of the '927 patent claims a method for treating a specified malignant tumor which "comprises parenterally administering to an animal affected with said malignant tumor a solution

containing in an amount sufficient to cause regression of the tumor ... [one of the diammineplatinum(II) dicarboxylate compounds claimed in the '707 patent and other [platinum(II) and] platinum(IV) compounds]" Claim 3 of the '927 patent claims a "composition suitable for parenteral administration to an animal affected with a ... [specified malignant] tumor ... comprising a pharmaceutically acceptable carrier and ... [one of the diammineplatinum(II) dicarboxylate compounds claimed in the '707 patent and other [platinum(II) and] platinum(IV) compounds]"

THE PHARMACHEMIE CARBOPLATIN PRODUCTS

11. The Pharmachemie Carboplatin Products are 1) powder for injection products containing carboplatin as their active ingredient which, if approved for marketing in the United States, will be available in strengths of 50mg per vial, 150mg per vial and 450mg per vial; and 2) injection products containing carboplatin as their active ingredient which, if approved for marketing in the United States, will be available in 10mg/mL, 5mL, 15mL and 45mL vials.

12. On or about April 16, 2001, Pharmachemie filed with the FDA an ANDA seeking approval to market the powder for injection form of the Pharmachemie Carboplatin Products in the United States. On or about December 6, 2001, Pharmachemie filed with the FDA an ANDA seeking

approval to market the injection form of the Pharmachemie Carboplatin Products in the United States.

13. Pursuant to the Federal Food, Drug and Cosmetic Act, each ANDA contained a certification by Pharmachemie that, in its opinion, the '927 patent was invalid, unenforceable or not infringed. By letter dated June 20, 2001, notice of the certification in the April 16, 2001 ANDA submission setting forth the factual and legal basis for the opinion regarding the '927 patent was sent to RCT and BMS. By letter dated February 20, 2002, notice of the certification in the December 6, 2001 ANDA submission setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion setting forth the factual and legal basis for the opinion regarding the '927 patent was sent to RCT and BMS.

14. BMS and RCT have asserted and are continuing to assert that the Pharmachemie Carboplatin Products will infringe claims 1 and 3 of the '927 patent.

15. Pharmachemie seeks a declaratory judgment that claims 1 and 3 of the '927 patent are invalid based on obviousness-type double patenting and, therefore, the Pharmachemie Carboplatin Products, when marketed in the United States, will not infringe those claims.

16. The only difference between the subject matter of the earlier issued claims in the '707 patent and the subject matter of the later issued claims 1 and 3 of the '927 patent, with respect to the compounds claimed in the '707 patent, is

the parenteral use of a solution containing such compounds to treat a specified malignant tumor (claim 1) and a composition that includes such compounds together with a "pharmaceutically acceptable carrier" (claim 3). The administration of such compounds to regress the tumors specified in those claims, and the manufacture or use of a composition containing such compounds in an amount sufficient to regress such tumors, would have been, to a person of ordinary skill in the relevant art and in light of the prior art, an obvious modification of the inventions claimed in the '707 patent.

17. An actual controversy exists between RCT/BMS and Pharmachemie with respect to invalidity of claims 1 and 3 of the '927 patent by reason of obviousness-type double patenting.

WHEREFORE, Pharmachemie prays for judgment against BMS and RCT:

(a) Dismissing the Amended Complaint herein;

(b) Declaring that claims 1 and 3 of the '927 patent are invalid and unenforceable based on obviousness-type double patenting; and

(c) Permanently enjoining RCT/BMS, their officers, agents, directors, servants, employees, subsidiaries and assigns, and all those acting under the authority of or in privity with them or with any of them, from asserting or otherwise seeking to enforce the '927 patent against Pharmachemie.

PHARMACHEMIE B.V. By its attorneys,

STERNS & WEINROTH A Professional Corporation 50 West State Street Suite 1400 Trenton, NJ 08607

Dated: October 22, 2002

aren A. Confoy (KC-0848)

OF COUNSEL: Francis C. Lynch Laurie S. Gill **PALMER & DODGE LLP** 111 Huntington Avenue Boston, MA 02199

United States Patent [19]

Cleare et al.

[11] 4,140,707 [45] Feb. 20, 1979

[54]	MALONAT	TO PLATINUM ANTI-TUMOR NDS	[56]	References Cited PUBLICATIONS	
[75]	Inventors:	Michael J. Cleare; James D. Hoeschele; Barnett Rosenberg; Loretta L. Van Camp, all of East Lansing, Mich.	Ward et al., Cancer Treatment Reports, vol. 60, No. 11 1675-1678 (1976). Rosenberg Plat. Metal Rev. 15, pp. 42-47 (1971). Leh et al., J. Pharmaceutical Sciences, 65, No. 3 (1976)		
[73]	Assignce:	Research Corporation, New York, N.Y.	pp. 315-320. Rosenberg et 2l., Nature 222, 385-386 (1969).		
[21]	Appl. No.:	778,955	Primary Examiner-Helen M. S. Sneed		
[22]	Filed:	Mar. 18, 1977	Attorney, Agent, or Firm-Dennis P. Clarke		
	Rela	ted U.S. Application Data	[57]	ABSTRACT	
[63]	abandoned. [51] Int. Cl. ²		Malonato platinum coordination compounds and a method of treating maignant tumors comprising the		
[51] [52]			parenteral administration to an affected animal of a solution of the compound.		

4 Claims, No Drawings

MALONATO PLATINUM ANTI-TUMOR COMPOUNDS

The invention described herein was made in the 5 course of work under a grant or award from the Department of Health, Education and Welfare.

This is a continuation, of application Ser. No. 260,989, filed June 8, 1972, now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates to novel malonato platinum coordination compounds and to their use in cancer chemotherapy.

SUMMARY OF THE INVENTION

The invention provides platinum coordination compounds having the formula:

[Pi(II)A,(OOC),-CRR1] or

cis or trans[Pt(IV)A,(OOC)2-CRR2)yL2]

wherein:

- x = 1 or 2;
- y = 1 or 2:
- z = 0.1 or 2.

provided that when y = 2, z = 0 and when y = 1, z is greater than 0;

R and R_1 are selected from the group consisting of H, ³⁰ lower alkyl, aryl, aralkyl, alkenyl, cycloalkyl, cycloalkenyl, alkoxy, OH, or are combined with the carbon atom to form a cycloalkyl or cycloalkenyl group, and substituted derivatives thereof;

when x = 1, A is HR₂N--CHR₃--CHR₄---NR₅H³⁵ and when x = 2, A is H₂NR₆ a heterocyclic amine or an amino acid, wherein R₂, R₃, R₄ and R₅ are the same or different and are selected from the group consisting of H, CH₃, C₂H₅, hydroxy and lower alkoxy provided that R₂ and R₃ may also be aryl or aralkyl, and each R₆ is the same or different and is selected from the group consisting of H, lower alkyl, aryl, aralkyl, hydroxy lower alkyl, hydroxyl and alkoxyl amines, alkoxylalkylamines wherein all of said alkyl groups are lower alkyls and heterocyclic substituents including said N as a ring member:

when z = 1, L is a bidentate anionic ligand, and

when z = 2, L is a monodentate anionic ligand. The invention also relates to a composition and so

method for treating malignant tumors in animals comprising parenterally administering to an animal affected with a malignant tumor a solution containing a platinum coordination compound as defined hereinabove in an amount sufficient to cause regression of the tumor.

DETAILED DESCRIPTION OF THE INVENTION

Platinum coordination compounds and methods for their production are described by J. C. Bailar, Jr., The 60 = 1 Chemistry of the Coordination Compounds, Reinhold Publishing Corp., N.Y., 1956, Chap. 2; J. Lewis et al, Modern Coordination Chemistry: Principles and Methods, Interscience Publishers, Inc., N.Y., 1960 and Kauffinan Inorganic Synthesis, 7, McGraw-Hill Book Co., Inc., 65 late. N.Y., 1963.

Platinum (II) forms dsp² coordination compounds which have a square planar arrangement in space. Plati-

4,140,707

num (1V) forms d^2sp^3 coordination compounds which have an octahedral arrangement in space.

The coordination compounds of the invention include the cis and trans isomers of platinum (11) and 5 platinum (IV) which contain the bidentate malonato ligand which may be substituted or unsubstituted. The malonato ligand may contain substituents selected from the group consisting of lower alkyl, (e.g., methyl, ethyl, n-propyl, isopropyl, n-butyl, etc.); aryl, (e.g., phenyl; 10 lower alkyl, lower alkenyl-, halo-, nitro-, lower alkoxysubstituted phenyl and naphthyl); aralkyl, (e.g., phenylmethyl (cenzyl), 2-(1-naphthyl)methyl); alkenyl, (e.g., 4-amino-1-butene, allyl); cycloalkyl. (e.g., cyclopropyl,

cyclohexyl, etc.); cycloalkenyl, (e.g., 2-cyclopenten-15 1-yl, 2-cyclohexen-1-yl); alkoxy, (e.g., methoxy, ethoxy, etc.), and hydroxy. Also suitable are the 1,1-cycloalkylenedicarboxylic acids, (e.g., 1,1-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, etc.) and the 1,1-cycloalkenyldicarboxylic acids,

20 (e.g., 1,1-cyclopropenedicarboxylic acid, 1,1cyclobutenedicarboxylic acid, etc.)

The coordination compounds of the invention also contain two monodentate ammonia or primary or heterocyclic amine ligands, i.e., when x in the above formula 25 is 2 or one bidentate amine ligand, i.e., when x is 1.

Suitable monodentate amine ligands include lower alkyl amines, (e.g., methyl-, ethyl-, n-propyl-, isopropyl-, n-butyl- amines, etc.), aryl amines, (e.g., aniline), aralkyl amines, (e.g., benzylamine), hydroxy lower alkyl amines, (e.g., ethanolamine, propanolamine; etc), hydroxylamine, lower alkoxy amines (e.g., methoxylamine, etc.), alkoxyalkylamines (e.g., methoxymethylamine, etc.), and heterocyclic amines (e.g., pyridine and aziridine). Also included are the amino acids, i.e., R_T --CHNH₂--COOH wherein R_T is H, lower alkyl (e.g., methyl, isopropyl, etc.), hydroxy lower alkyl (e.g., hydroxymethyl, hydroxyethyl, etc.), aralkyl (e.g., benzyl, etc).

It is to be understood that the coordination compounds of the invention may include two identical or different monodentate ligands.

Suitable bidentate amine ligands include the substituted and unsubstituted primary and secondary ethylenediamines. One or both of the carton atoms of the ethylenediamine may coatain substituents such as lower alkyl (e.g., methyl, ethyl), hydroxyl, alkoxy (e.g., methoxy, ethoxy, etc). Secondary ethylenediamines wherein one or more of the amine groups contains substituents such as listed above for the carbon atoms of the primary amine and aryl (e.g., phenyl) and aralkyl (, e.g. benzyl) may also be utilized.

The Pt (II) coordination compounds specified herein do not exist as geometrical isomers; however, the Pt (IV) compounds exist as cis and trans isomers. It is to be further understood that the invention is inclusive of the cis and trans isomers.

The Pt (IV) coordination compounds may also contain two monodentate or one bidentate anionic ligand where only one malonato ligand is present, i.e., where y = 1 in the above formula.

Suitable monodentate anionic ligands include chloride, bromide, iodide, nitrite, hydroxide, nitrate, sulfamate, etc. Among the bidentate anionic ligands which may be present are oxalate, pyrophosphate, dithioxalate.

It is to be understood that the invention includes those coordination compounds containing mixed monodentate anionic ligands;

Ħ

The preferred compounds are those wherein R and R₁ in the above formula are H, methyl or ethyl, i.e., malonatopletinum, methylmalonatoplatinum and ethylmalonatoplatinum coordination compounds. The most preferred Pt (II) compounds are those malonato- 5 platinum (11) compounds of the above formula wherein x = 1 and R₂, R₃, R₄ and R₅ are each H, i.e., malonatocthylenediamine platinum (II), methylmalonatoc-thylenediamineplatinum (II) and ethylmalonatocthylenediamineplatinum (II); and wherein x = 2 and 10 each R6 is H. i.e., malonatodiammineplatinum (II), meethylthylmalonatodiammineplatinum ai and malonatodiammineplatinum (II).

The preferred Pt (IV) compounds are those wherein x = 2, each R₆ is H and y = 2, i.e., bismalonato (or 15 bismethylmalonato or bisethylmalonato) diammine platinum (IV).

The coordination compounds of the invention may be prepared by one of a variety of well-known methods. A general method of preparation of the Pt (II) coordina- 20 tion compounds is as follows: Starting compounds having the formula cis-[Pt A(Hal)2] wherein Hal is I, Cl or Br and A is one bidentate or two monodentate amine ligands (prepared by the method of S. C. Dhara, Indian J. Chem., Vol 8, p. 193 (1970)) are reacted with silver 25 nitrate to form the diaquo complex. The latter is then reacted with the malonate ion to form the coordination compounds of the invention. This method is represented by the following reaction scheme:

cis-[Pt ACI] + 2AgNO3 + 2H2O) - cis-[Pt A(H2O) 2)(NO3)2 + 2A8CI

G1-[PT A(H2O)2](NO3)2 + H2C-(COO)2 - [PI A(OOC)2-CH2] + 2NO3 - + 2H2O

wherein A is one bidentate amine ligand or two monodentate amine ligands.

The following non-limiting examples are illustrative of the methods for preparing the compounds of the invention.

EXAMPLE 1

Malonatodiammineplatinum(II) $[Pt(NH_3)_2(C_3H_2O_4)]$

Reactions:

[Pt(NH3)2C12] + 2AgNO3 + 2H2O) -[PI(NH1)2(H2O)2](NO)) + 2AC

[P1(NH3)2(H2O)2](NO3)2 + C3H2O42- $[P_1(NH_3)_2(C_3H_2O_4)] + 2NO_3 - +2H_2O_2$

Silver nitrate (22.55g --- slightly less than the stoichiometric amount in order to avoid silver contamination) was dissolved in water (50 ml.) and added to 55 [Pt(NH₃)₂Cl₂] (20g) in a 250 ml. conical flask. The contents were warmed (60° C.) on a hot plate with rapid stirring until the silver chloride precipitation was complete and the mother liquor was almost colorless. The silver chloride was filtered off using a fine pore sintered 60 glass filter and the precipitate was washed several times with hot water to give a total filtrate volume of 100-200 mi.

Malonic acid (13g - a twofold excess) was dissolved in water (30 ml.) and neutralized with a solution of 65 KOH (-13g in 30 ml.) to pH 5-6. The resulting potassium malonate solution was added to the platinum containing filtrate and the mixture was carefully warmed

(to avoid "bumping") on the hot plate until white crystals of the product started to form in great quantity. The mixture was then cooled to room temperature and the product filtered off. The filtrate was reheated for 5-10 minutes and cooled to 0° C. to collect a further crop. The crude yield at this stage was 20.5g (93%).

The product was recrystallized by dissolving in boiling or near boiling water. The above yield (20.5g) required about 3 liters of boiling water for complete disso-

lution. Malonic acid 1g/L was dissolved in the water to suppress any hydrolysis." The filtered solution was cooled to 0° C. to give white fluffy needles

(18.25g-83%). U.V. /vie spectral and conductivity studies have shown that hydrolysis is negligible.

The crystals decompose between 185°-190° C. The structure of the product was verified cia an i.r. spectrum. Solubility of the product is low in cold water, i.e., 20 mg/100 mls at 20° C. and 43 mg/100 mls at 37° C., but higher in near boiling water (90°-100° C.)~65g/100 ml.

The empirical composition was verified by elemental analysis:

Malonatodiammineplatinum(II) [P1(NH3)2(C3H2O4)] Calculated for C3H3N2O4Pt.C.: 10.88; H: 2.43; N: 8.46: Pt 58.9; Found C: 10.67; H: 2.35; N: 8.54; Pt 58.7.

EXAMPLE 2

[Pt (en) (C₄H₄O₄)] (en = H2N(CH₂)₂NH₂; C₄H₄O₄²⁻ $= O_2 C CH(CH_3) CO_2^{\frac{1}{2}}$ 30

Silver nitrate (3.64g) was dissolved in 20 ml of water and added to [Pt(NH2)2(CH2)2CL2] (3.5g) suspended in water (30 mL) in a conical flask. The mixture was stirred on a warm hot plate for 5-10 minutes until all the yellow platinum complex had dissolved to give a yellow 35 liquor plus a copious white silver chloride precipitate. The mixture was filtered through a fine pore filter and

- the precipitate washed twice with small volumes of hot : water. The clear filtrate plus washings was added to an aqueous solution of methylmalonic acid (2g in 20mls) 40 which had been adjusted to pH 5-6. The mixture was heated to about 80° C. for five minutes and then cooled to 0°. C. The shiny white crystals which formed were
- filtered and washed with cold water and acctone (Yield 2.65g). The mother liquor plus aqueous washings was 45 reduced to about half its original volume (~30 mb) to
- yield a second crop on cooling to 0° C. (Yield 0.85g). Total Crude yield was 3.50 gms (88%). The complex was recrystallized from a minimum volume of boiling water (around 250 mls) with filtration through a fine 50

pore filter prior to cooling to 0° C. Yield of shiny white leaflets 2.96g (74%). Calculated for C6H12N2O4Pt: C:19.41 H 3.26 N:7.55; Found C:19.11 H 3.61 N:7.89.

A second crop (0.33g-8%) was obtained by reducing the bulk of the mother liquor.

EXAMPLE 3

trans-[Pt IV(NH₃)₂(mal)₂]

Silver nitrate (5.45g) was dissolved in water (30 ml) and added to trans [Pt(NH3)2Cl4] (3g) suspended in water (30 mls) containing concentrated nitric acid (3 ml). The contents were warmed on a hot plate (70°-80°. C.) and stirred for at least one hour. The mixture was filtered through a fine pore sintered glass filter to remove the silver chloride. The precipitate was washed twice with a small volume of hot water. The clear fil-

trate plus washings was tested with a drop of IM KCl solutions to determine if excess silver chloride was present. (If the test is positive, sufficient KCl is added dropwise to the bulk solution until no silver chloride is precipitated.) The solution was refiltered and the filtrate 5 reduced to 20-30 mis in volume and cooled to 0° C. to yield plate yellow crystals (presumably trans (P1(NH3)2(NO3)4]). These were washed with a little cold water and then acetone (Yield 1.8g). A portion of this yield (1g) was dissolved in a minimum of hot water 10 to which sodium nitrate (0.2g) had been added. This solution was filtered into an aqueous solution of malonic acid (0.5g - a slight excess) which had been adjusted to pH 5-6 with sodium hydroxide. White nucro-crystals of the complex quickly form on cooling. These were fil- 15 tered off and washed with cold water and acetone. (Yield 0.7g --- 30-40%).

Calculated for CeH10N208Pt C:16.63 H 2.33 N:6.47; Found C:16.69 H 2.64 N:6.80.

GENERAL STRUCTURE CONFORMATION 20 The malonate group is shown to be coordinated to the platinum by the observed change in the electronic spectra on going from the aquo to the malonate species. Thus, structures such as $[Pt(NH_3)_2(H_2O)_2]_2(H_2C_3O_4)]$ are ruled out confirming the analytical data. Similarly, 25 zero-time conductivity measurements support a neutral compound. The i.r. spectra show the presence of coordinated carboxyl groups (1600-1650 cm⁻¹ and 1400 cm⁻¹) with no CO₂H groups (which would show at 1700-1750 cm). Finally the cerboxyl group vibrations 30 are compatible with a chelated structure as compared to oxalate complexes of known structures.

The compounds of the invention were tested for fective dose, to en upper dose lev anti-turnor activity using our standard screening tumor, solid sercoma 180 tumer in female Swiss white mice, 35 The results are set forth in Table I.

following standard protocols for this testing as set by the National Cancer Institute. (Cancer Chemotherapy Rep., 25(1962)).

6

For these tests an S 180 tumor taken from a sacrificed mouse was disceted free of superfluous tissue and cut under sterile conditions into approximately 10 milligram size pieces. These tissue pieces were then implanted by trocar in the left axillary region, subcutaneously, in new mice. The mice were, on the average, approximately four weeks old and weighed 18-20 grams. Taking day 0 as the day of implant, the animals were sacrificed on day 10. The tumors were excised and weighed and the ratio of the weights of the tumors in mice in the treated animals to the control set of animals was obtained. This ratio, multiplied by 100, is given as the T/C ratio in Table I.

For the first set of tests the coordination compound was freshly dissolved in sterile distilled water and injected intraperitoneally on day I into each of the test 20 mice. The volume of the injection was usually 1 ml. In some cases, in order to get an active dose into the animal where the chemical was not soluble in this amount of solvent, a fine dispersion was prepared of the dose " needed for the test. Thus, some of our test results were obtained on animals where a slurry of the compound was injected. These are so noted in Table I below. In addition, for some of the compounds, there was injected about 1 ml of solution, either in one single injection, or in 2 injections given a few hours apart of 1 ml each. These injections were initially given in 4 different dose levels for each new compound with 6 mice in each dose level. The tests covered a dose range from a low ineffective dose, to en upper dose level which produced some deaths within the time period of the experiment.

TABLE I

Tests of Antitumor Activity of Malonato and Substituted Malonato Coordination Complexes of Platinum,

				No. of
Coordination Complex	Day of Injection	Dose Level	T/C	
Malonatodiammineplatinum [11] (slurry in H2O]	1	10 mg/kg	76	0
(i) (iai) a tilo)		15 mg/kg	38	0
		20 mg/kg	64	0
		25 mg/kg	31	0
		30 mg/kg	7	1/6
		40 mg/kg		6/6
		50 mg/kg	1	5/6
•		60 mg/kg		6/6
(solution in H ₂ O)	Daily for days 1–10	4 mg/kg	54	0
		5 mg/kg	56	0
		6 mg/kg	23	0
		7 mg/kg	12	0
Methylmalonatodiammine- platinum(II) (Solution in H2O)	1	30 mg/kg	39	0
Furthernitest (Soundor In 1170)	• •	40 mg/kg	26	Ð
		50 mg/kg	35	Ō
		60 mg/kg	6	Ö
		70 mg/kg	124	3/6
		80 mg/kg	_	6/6
	1	60	80	ō
malonatoethylenediamine-		80	138	ō
platinum (II)		100	85	ō
		120	50	ŏ
		40	ñ	ŏ
ethylmalonatoethylenediamine-	1		ű	ŏ
platinum (II)		60	79	ŏ
· ·		50	47	ŏ
		90	55	ĩ
		100		
		110	41	0
· ·		120	58	0
malonato-1,2 propylenediamine-	1	45	50	0
platinum (II)		60	9	1
• • • •		75	16	3
		90	-	5

4,140,707

		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
•	7			
	-continued			
	Day of Injection	Dose Level	No. of T/C Deaths	
Coordination Complex	1	20	69 0	
milomto-1.3 propylenediamine-	L	40	79 0	
platinum (II)		ல்	21 0	
-		80	35 1	
methylmsionstoctbylene-	1	30 mg/kg	78 0	
diaminer latinum (11)		40 mg/kg	80 0	
(solution is H2O)		50 mg/kg	31 0	
		60 mg/kg	26 0	
		70 mg/kg	20 1	
		90 mg/kg	4 1	
ethyimpiontociammine-	1	30 mg/kg	57 0	
platine=n(ll)		40 mg/kg	43 0	
(solution in H ₂ O)		50 mg/kg	47 0	
		60 mg/kg	39 0	
		70 mg/kg	17 0 16 0	
		20 mg/kg	16 O 88 O	
maloustoethyleaediamine-	1	10 mg/kg	88 Q	
olatinum (II)		20 mg/kg	58 0	
(solution in H ₂ O)		40 mg/kg	18 0	
-		45 mg/kg	49 0	
		50 mg/kg	35 0	
		55 mg/kg	38 0	
		60 mg/kg	15 3/6	
		10 mg/kg	24 3/6	
1,1-cyclobutanedizarboxylate	I .	20 mg/kg	71 0	
Ciammiceplatiaum (II)	• •	40 mg/kg	60 0	
	•	60 mg/kg	38 0	
		80 mg/kg	42 0 .	
		100 mg/kg	69 0	
		120 mg/kg	15 D 62 4	
		160 mg/kg	38 0	
malonatchis(methylamine)	1	80 mg/kg 100 mg/kg	53 0	
plaunara (II)		120 mg/kg	28 0	
•		140 mg/kg	25 0	
		160 mg/kg	17 1 19 1	

In addition to the day 1 injections described above, in ³⁵ a number of cases injections were delayed until day 8 of tumor growth. In these cases the tumor was usually at least larger than 1 gm, as estimated by palpation. The animals were then injected and observed for a period of approximately 60 days. Activity was measured by the 40 number of animals whose tumors had regressed to the vanishing point, while still allowing the animal to survive for this time period. Such test results are described in TABLE II below. 45

TABLE II

I ADLE II Tests of Large Sarcous 10 Regressions by Malorato Coordination Completes of Plathoum. Turnor-Sarcous 180 Arimal-Formale Swins white mice Single injections on Single injections on Bay 8 intraporteenally in H₂O solutions

Coordination Complex	Dose	Total Number of Regressions	Deaths	- 50
melenatodiammice-	14 mg/kg	2	4	
pereneration	16 mg/kg	3	3	
	18 mg/kg	4	2	
	20 mg/kg	5	1	- 55
malenatoethylene- diamineplatinum(II)	40 mg/kg	3	3	
dermet annender	45 mg/kg	1	5	
	50 mg/kg	2	- 4	
	60 mg/kg	_ J	3	

The results described in Tables I and II indicate that ⁶⁰ the compounds of the invention are very potent antitumor agents against the S 180 tumor in Swiss white mice.

Confirmatory tests of antitumor activity against the Walker 256 Circinosarcoma in rats, and the ADJ/P-C6A turnor in mice were conducted. The initial test 65 results are shown in Table III and confirm the potent action of the compounds of the invention against these other tumor systems.

TABLE III

Malonatod	liammineplati alker 256 Ca setion Day 1	Antitumor Activity num(II) reinosarcoma - Animal - in Oil, Intraperitoneally % Inhibition	Deaths			
10 mg	· Ara	100	0			
20 mg		100	0			
40 mg		100	0			
	z/kg	<u> </u>	0			
N 1 1	at a lana dia mi	(Dmuniteleza)				
Maiousio	Maloustoethylenediamineplatinum(U) Tumor: Walker 256 Carcinosarcoma - Animal - Rat					
Circle Inte	ution Day 1	In Oil, Intraperitoneally				
Do	Citon Day •	% Inhibition	Deaths			
100	5C					
10	,	1	0000			
20	D	25	v			
4		100	0			
	Ū.	100	0			
16	'n		all			
Tunner	D1/PC63 -	Animal - Mouse				
Single int	ection Day 2	5 in Gil, Intraperstoneau	Y			
Do	36	% Inhibition	Deaths			
		13	0			
	4	94	ŏ			
	0	100	ō.			
10		100	all			
50	0					
	•					

Samples of the malonato diammine and malonato ethylene diamino complexes of platinum(II) were sub-mitted to the Drug Research and Development Branch of the National Cancer Institute for screening for antitumor activity against the L1210 tumor in mice. The results obtained on this tumor system are shown in Table IV. They confirm the activity of the compounds of the invention.

TABLE IV

Confirmatory Tests of An National Can	cer Institute.
Tumor: L1210	Animal - Mice
Daily injectons Days 1-9, Intraperit	oneally -

TABLE IV-con	ntinucd			
Confirmatory Tests of Antitu National Cancer J	mor Activity at nstitute.	the		
Coordination Complex	Dose	% Increase in Lifespan	5	b
Malonstodiammineplatiaum(II)	50 mg/kg	163	•	
Malonateethylenediamineplatinum(II)	25 mg/kg 12.5 mg/kg	133 115		۷
	50 mg/kg 25 mg/kg	101 160		
(repeat test)	12.5 mg/kg 37.5 mg/kg	151 121	10	
Tumor: L1210 Daily injectors Days 1-9, Intraperitones	Animal - Mi	ce		
	Dose	% Increase in Lifespan		
Coordination Complex	25 mg/kg	196	- 15	
	16.5 mg/kg	160		
	ll mg/kg	145		

9

The malonatoplatinum coordination compounds of the invention are preferably dissolved or suspended in 20 water or other pharmaceutically acceptable carrier liquids. The parenterally administerable composition should preferably contain from about 0.5mg to about 10mg per ml., it being understood that the amount may vary greatly depending upon the particular compound 25 employed and the animal to be treated.

The platinum coordination compounds of the invention are preferably administered parenterally to an animal affected with a malignant tumor. The duration of treatment and the dose level, of course, will depend in 30 each case upon the size of the host animal, nature and size of the tumor, etc. Generally, however, a dose level of from about 20 to about 200 mg/kg of body weight per day will be sufficient. It is to be understood, however, that the platinum coordination compounds com- 35 pounded with a suitable pharmaceutical carrier in the same proportions as recited above may also be administered orally at the same dosage levels.

10

1. Platinum coordination compounds having the fornula:

[Pt(II)A_((OOC)_-CRR_i)]

-		•
whe	rein:	

x = 1 or 2;

We claim:

- R and R1 are selected from the group consisting of H, lower alkyl, aryl, aralkyl, alkenyl, cycloalkyl, cycloalkenyl, alkoxy, OH, or combine with the carbon atom to form a cycloalkyl or cycloalkenyl group;
- when x = 1, A is HR_2N --CHR₃--CHR₄--NR₅H and when x = 2, A is H_2NR_6 or an amino acid, wherein R2, R3, R4 and R5 are the same or different and are selected from the group consisting of H, CH3, C7H5, hydroxy and lower alkoxy, provided that R2 and R5 may also be aryl or aralkyl and each R6 is the same or different and is selected from the group consisting of H, lower alkyl, aryl, aralkyl, hydroxy lower alkyl, hydroxyl- and alkoxylamines, and alkoxyl alkyl amines.

2. The compound of claim 1 having the formula:

[Pi(II)A_((OOC)_-CH2)]

wherein:

x = 1, and

R₂, R₃, R₄ and R₅ are each H.
3. The compound of claim 1 having the formula:

[P1(II)A_((OOC)2-CH2)]

wherein:

x = 2, and each R₆ is H. 4. Malonato diammine platinum (II).

40

45

50

55

60

REEXAMINATION CERTIFICATE (1173rd)

[56]

United States Patent [19]

[45] Certificate Issued Dec. 19, 1989

[11] B1 4,140,707

Cleare et ales.

[54] MALONATO PLATINUM ANTI-TUMOR COMPOUNDS

[75] Inventors: Michael J. Cleare; James D. Heescheler; Barnett Rosenberg; Loretta L. Van Camp, all of East Lansing, Mich.

[73] Assignee: Research Corporation Technologies, Inc., Tucson, Ariz.

Recramination Request: No. 90/001.716, Feb. 14, 1989

Recramination Certificate for:

Patent No .:	4,140,707
Issued:	Feb. 20, 1979
Appl. No.:	778,955
Filed:	Mar. 18, 1977

Related U.S. Application Data

[63] Continuation of Scr. No. 260,989, Jun. 3, 1972, abandoned.

[51]	Int. CL4	C07F 15/00
1521	U.S. C	
(1		566/17

[58] Field of Search 546/2; 556/17, 137

References Cited

PUBLICATIONS

"On the Stereochemistry of Placo Salts (IV)", authored by A. A. Grunberg on Jan. 8, 1931 and published on May 2, 1931 in Helvetica Chimica Acta XIV at pp. 455-472.

Primary Examiner-A. McFarlane

[57] ABSTRACT Malonato platinum coordination compounds and a method of treating malignant tumors comprising the parenteral administration to an affected animal of a solution of the compound.

B1 4,140,707

5

30

35

40

45

50

55

60

65

[Pt(L]A_((00C)_-CR))]

REEXAMINATION CERTIFICATE ISSUED UNDER 35 U.S.C. 307

1

THE PATENT IS HEREBY AMENDED AS INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the patent, but has been deleted and is no longer a part of the 10 pstent; matter printed in italies indicates additions made to the patent.

AS A RESULT OF REEXAMINATION, IT HAS 15 BEEN DETERMINED THAT:

Claims 3 and 4 are cancelled.

Claim 1 is determined to be patentable as amended. 20

Claim 2, dependent on an amended claim, is determined to be patentable.

New claims 5, 6, and 7 are added and determined to 25 be patentable.

1. Platinum coordination compounds having the formula:

wherein: r = 1 or 2:

- R and R1 are selected from the group consisting of H, lower alkyl, aryl, aralkyl, alkenyl, cycloalkyl, cycloalkenyl, alkozy, OH, or combine with the carbon atom in CRR1 to form a cycloalkyl or cy-
- cloalkenyl group; when x=1, A is HR2N-CHR3-CHR4-NR3H and when x=2, A is H2NR6 or an amino acid, wherein R2, R3, R4 and R5 are the same or different and are selected from the group consisting of H, CHJ, C2H3, hydroxy and lower alkoxy, provided that R2 and R3 [msy also be] are also selected from the group consisting of aryl or aralkyl and each Reis the same or different and is selected from the group consisting of H, lower alkyl, aryl, aralkyl, bydroxy lower alkyl, hydroxyl- and alkoxylamines, and alkoxyl alkyl amines, provided that when x=2 and A is H2NR6 and R6 is H, then R and R1 are not both H.

5. The compound of claim I wherein R and R i taken together with the carbon to which they are attached form a cycloalkyl group.

6. The compound of claim 5 wherein R and R1 taken together with the carbon atom to which they are attached form a cyclobutane.

7. 1.1 cyclobutane dicarboxylate diammine platinum (11).

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE EXTENDING PATENT TERM UNDER 35 U.S.C. 156

Patent No.	:	4,140,707
Dated	:	February 20, 1979
Inventor(s)	:	Michael J. Cleare et al
Patent Owner	:	Research Corporation Technologies, Inc.

This is to certify that there has been presented to the

COMMISSIONER OF PATENTS AND TRADEMARKS

an application under 35 U.S.C. 156 for an extension of the patent term. Since it appears that the requirements of the law have been met, this certificate extends the term of the patent for the period of

916 DAYS

with all rights pertaining thereto as provided by 35 USC 156 (b).

!

I have caused the seal of the Patent and Trademark Office to be affixed this 25th day of January 1990.

10

Jeffrey M. Samuels Acting Commissioner of Patents and Trademarks