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Abstract 
 
Auctions are widely used online to conduct commercial transactions. An important feature of 

online auctions is that even bidders who intend to buy a single object frequently have the 

opportunity to bid in sequential auctions selling identical objects. This paper studies key features 

of the optimal bidding strategy, assuming rational, risk-neutral agents with independent private 

valuations and sealed-bid second-price sequential auctions. In contrast to previous work on this 

topic, we develop our theory using the concept of the “option value” of an upcoming auction – a 

measure of the expected payoff from being able to participate in a future auction.  This option 

value depends, among other things, upon the mean and variance of the future number of bidders. 

We derive an optimal bidding strategy in sequential auctions that incorporates option value 

assessment. Furthermore, we establish that our optimal bidding strategy is tractable since it is 

independent of the bidding strategies of other bidders in the current auction and is only 

dependent on the option value assessment.  We test and find support for our theory using data 

collected on 327 eBay auctions on digital cameras in first two months of 2001.  

                                                 
1Please address all correspondence to Hao Xu.  
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1. Introduction 

There has been considerable interest in Online Auctions since they have become established 

mechanisms to conduct commercial transactions in consumer and business markets. Recent 

surveys (Pinker et al. 2001, de Vries and Vohra 2002) discuss alternative auction formats 

(English, Dutch, Yankee, Combinatorial Auctions) and survey the literature on a range of 

problems (prominent examples include winner determination, optimal bidding strategy, and lot 

sizing). These surveys complement the existing literature on standard auctions that have been 

extensively studied in the literature (Cassady 1967, Stark and Rothkopf 1979, Milgrom and 

Weber 1982, McAfee and McMillan 1987). As several recent surveys on online auctions note, 

the online environment generates a new set of requirements that challenge existing theories and 

models that have been analyzed to date. As Pinker, Seidmann, and Vakrat (2001) put it: ” This is 

not because the previous research has been flawed, but rather because there has been enormous 

change in the opportunities for the use of auctions.”  

 

Of particular interest to this paper is the analysis of sequential auctions. Sequential auctions are 

auctions for the same good, ordered in time, and are commonly observed on consumer sites such 

as eBay (Kaiser and Kaiser 1999). Listings of sequential auctions and the ability to collect data 

on the bid history of past auctions using software agents are an important feature of the online 

environment, as shown in Figures 1, 2, and 3. This permits bidders to bid in multiple sequential 

auctions and to assess their likelihood of winning in an upcoming auction. These assessments 

could be used to formulate their bidding strategy in a current auction – in effect, bidding taking 

into account the “option value” of an upcoming auction. Developing and testing a theory of 

optimal bidding strategy in sequential auctions based on this observation is the focus of the paper.  
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Figure 1: Example of Ongoing Auctions 

 

Figure 2: Item Information for a Specific Auction 

 

Figure 3: Bid History for a Specific Item 
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This paper is organized as follows. Section 2 details background information and literature 

review. Section 3 studies bidders’ optimal strategy and the impact of uncertainty on bidders’ 

decisions. Section 4 presents our tests and results that explain the implications of our theory. We 

conclude the paper in Section 5 with a summary, the major contributions, and limitations of this 

research. 

 

2.0 Background and Literature Review 

2.1 Private Value Model and Online Bidder’s Bidding Strategy 

In a typical online auction, such as auctions conducted at eBay, Amazon, and Yahoo!, bidders 

are individual consumers, who buy items to satisfy their own needs. Although there is a chance 

that bidders might buy items in order to resell later for a profit (for example, bidders may buy 

stamps either for their own collection or for trading), experience tells us that many categories of 

goods selling on eBay, Amazon, and Yahoo! are not bought for resale. These goods include 

consumer electronics, computer parts, and digital equipments.  For these “private-value” goods, 

each bidder knows her value and this value is independent of how other bidders value these items.  

On the contrary, “common-value” goods, such as public construction contracts, are believed to 

have consensus value and may be purchased for reselling. This paper will focus on the study of 

“private-value” goods. 

 

The benchmark private-value model studies auctions of private goods. In this model, each bidder 

knows how much she values the object for sale, but her value is private information to herself. 

One conclusion of private-value model is that, in second-price auctions, a bidder’s dominant 

strategy is to bid her reservation value. (Vickrey 1961, Wilson 1992, Matthews 1995, Thiel and 

Petry 1995). However, online bidders, particularly experienced online bidders, often appear to 
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bid at a discount level of their reservation values (Sinclair 1999). In some online auction forums, 

bidders refer to this strategy as the optimal strategy. The data we collected from eBay.com 

website shows that many bidders bid in multiple auctions, with successively higher bids in later 

auctions.  This type of bidding behavior seems to contradict the results of the private-value 

model. However, the private-value model implicitly assumes that bidders participate in only one 

auction. Online bidders often have the choice of bidding in a sequence of auctions selling the 

same type of item. Furthermore, as noted earlier, in contrast to conventional auctions, online 

auctions can be monitored using software agents. This enables bidders to estimate a variety of 

information such as the number of bidders, variability in the number of bidders, and how they 

vary as a function of when the auction is held (weekend vs. weekday), the type of product being 

auctioned, and so on. How should bidders incorporate these estimates into their bidding strategy 

in what is inherently an uncertain environment? These are the questions we address in this paper. 

 

2.2 Previous Study about Sequential Non-Internet Auctions and Online Auctions 

In this section, we review the research literature on non-Internet sequential auctions, and explain 

how Internet sequential auctions may differ from non-Internet auctions. Milgrom (1989) and 

Milgrom and Weber (1982) provide theoretical analyses of the price trend in a sequential auction 

of identical objects and conclude that expected prices should remain constant throughout the 

sequence of auctions within a sale. However, empirical evidence shows that actual price may 

either decline or increase sequentially. Ashenfelter (1989) reports that in sequential wine 

auctions, a downward price trend was observed. McAfee and Vincent (1993) examined data of 

Chicago wine auctions and attained similar results. Ashenfelter and Genesove (1992) also 

observed that “price-decline-anomaly” phenomenon occurs in real-estate market. Other empirical 

studies have found that prices may be increasing. Gandal (1997) studied sequential auctions of 
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the cable TV licenses conducted in Israel and observed increasing prices. Jones, Menezes, and 

Vella (1998) noticed that prices may either increase or decrease in sequential wool auctions. 

 

Much of the theoretical research on non-Internet sequential auctions focuses on the observance 

of “anomalous price trend” and its theoretical explanations. Von der Fehr (1994) explains the 

anomalous price trend using participation cost. Black and de Meza (1992), Krishna and 

Rosenthal (1996), Branco (1997), and Menezes and Monteiro (1999) consider synergies and their 

impact on price trend.  

 

Pinker, Seidmann, and Vakrat (2001) provides an excellent review of current state of research on 

online auctions. Hence, we provide only a selective review of the earlier research that is most 

directly linked to this paper. Several studies present overviews of online auctions (Beam and 

Segev 1998, Klein and O’Keefe 1999, Lucking-Reiley 2000, Herschlag and Zwick 2000). These 

papers represent the earliest studies of key features of online auctions. Lucking-Reiley (2000) 

explores what types of goods are sold through online auctions and the various formats used in 

these auctions. Beam and Segev (1998) identify the defining characteristics of online auctions 

and major differences from standard auctions. Several studies (Lucking-Reiley et al. 1999), 

Bapna, Goes, and Gupta 2000a) have also focussed on overview study of eBay auctions. Bajari 

and Hortacsu (2000) give an overview of eBay auctions and provide empirical insights from 

them. Lucking-Reiley et al. (1999) conducted an analysis of determinants of prices in online 

auctions for collectible one-cent coins at eBay, and reports that seller's feedback ratings, 

particularly negative feedback ratings, have a measurable effect on her auction prices. Minimum 

bids and reserve prices have positive effects on the final price. Also, auctions with longer 

duration tend to be priced higher on average.  
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Another research focus is the study of multi-unit auctions. Bapna, Goes, and Gupta (2000b) 

identify three different types of bidders in multi-unit B2C auctions, indicating that bidders may 

adopt different bidding strategies. Easley and Tenorio (1999) study bidding strategies in multi-

unit Internet Yankee auctions. Seidman, Pinker, and Vakrat (2001) study the optimal design of 

multi-unit and multi-period online auctions. Sandholm, Suri, Gilpin, and Levine (2002) 

investigate the winner determination problem of multi-unit combinatorial auctions. Arora, 

Cooper, Krishnan, and Padman (1999) design a e-market simulation environment, IBIZA, which 

allows researchers to experiment with different market mechanisms including various types of 

online auction formats. 

 

Online sequential auctions are different from non-Internet sequential auctions. In most 

theoretical models of sequential auctions, the number of auctions is fixed; bidders enter and 

leave the auctions at the same point (or winners leave and the rest remain). So, the kth auction of 

bidder A is also assumed to be the kth auction of bidder B. However, in online sequential 

auctions, no such symmetry can be assumed. Each bidder faces a continuous stream of auctions. 

Bidders enter those auctions at different times and may have participated in different number of 

auctions. For example, the first auction of A may be the fifth auction of B.  We develop a model 

where an auction may have bidders who have bid in earlier auctions, and other bidders for whom 

this is the first auction.  Furthermore, in non-Internet auctions, the number of bidders is generally 

fixed while it is random in Internet auctions. The impact of this uncertainty on bidding behavior 

is an interesting issue that, to our knowledge, has not been studied before.   

 

Thus, the principal contribution of this paper is a model of online sequential auctions that 

captures important features of these auctions neglected in earlier models of sequential auctions.  



 8 

This model provides important and novel insights on how uncertainty affects bidding strategies.  

We test and find strong empirical support for these predictions. 

 

 3.0  Study of Optimal Bidding Strategy  

In this paper, we consider a sale of two identical objects through second-price sealed-bid 

auctions. If a bidder wins an auction, she will leave the game. If she loses the first auction, she 

will bid in another auction with probability of 1.2 Each bidder intends to buy at most a single 

object i.e., the utility of a second object is assumed to be zero.  In future work, we intend to relax 

this assumption. However, we conjecture that this will not qualitatively change the results 

obtained here as long as marginal utility is diminishing i.e. the utility gained from the second 

object is smaller than that from the first. In this paper, we define new bidders to be those that 

have not bid in any auctions selling the same item before. Seasoned bidders are those for whom 

the current auction is their second auction. 

 

It is easy to understand that a new bidder’s expected utility comes from both auctions. The first 

component of a bidder’s utility is the difference between her reservation value and price in the 

first auction; the second component is the corresponding difference in the second auction 

multiplied by the probability of losing in the first auction, because only if she loses in the first 

auction will she receive utility in the second auction. Since we use bidder’s expected payoff as 

her utility function, we are assuming risk-neutrality here. 





=
 wins;she if price,-n valuereservatio

loses; she if ,0
AuctionFirst  FromUtility  

                                                 
2 It is straightforward to generalize the model to the case where the bidder bids in a subsequent auction with some 
known probability, and to the case where there is more than one subsequent auction, and to allow for bidder 
valuations to be drawn from different distributions. 
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



×=
 wins.she if price,-n valuereservatio

loses; she if 0,
auction)first  losing ofy Probabilit(Auction Second FromUtility 

 

In the rest part of this paper, we will assume independent, private valuation, as in the private-

value model. We will also assume that within the same auction, there are two types of bidders – 

new bidders and seasoned bidders. We assume, mostly for ease of notation, that bidders of the 

same type adopt the same type of bidding function (strategy). From private-value model, we 

know that seasoned bidders would bid their reservation values. Hence, we use the following 

assumption. 

 

Assumption: New bidders adopt the same type of bidding strategy )(vb , where v is a bidder’s 

reservation value.  Bidders’ valuations are drawn independently from a distribution F(.).  

 

3.1 Study of Bidding Strategy under Certainty  

We start by assuming that bidders know the number of new and seasoned bidders that will bid in 

each auction. As in all private value models, the bidder is assumed to know the distribution of 

reservation values of other bidders but the actual value is private information to each bidder.  A 

seasoned bidder A will bid his reservation value, since for him there are no future auctions.  On 

the other hand, a new bidder, B has to consider how her first auction bid affects the likelihood of 

being able to participate in a second auction.  Before formally deriving B’s optimal strategy, a 

simple example provides some intuition for B’s strategy.  

Example 1:  

B bids in two auctions. In either auction, B competes with another bidder whose bid is drawn 

from a uniform distribution U(0,6). B’s reservation value is 4. We consider the following 

alternatives: 
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Alternative 1: B bids her reservation value in both auctions. Recall that since this is a second 

price auction, B wins at its opponents bid x when x <= 4.  

78.1
6
1).4(

6
46

6
1).4()(

4

0

4

0

=−−+−= ∫∫ dxxdxxuE  

Alternative 2: B bids less than her reservation value in the first period and reservation value in 

the second period. If she bids 2 in the first auction, her expected utility is: 

89.1
6
1).4(

6
26

6
1).4()(

4

0

2

0

=−−+−= ∫∫ dxxdxxuE  

Table 1 shows the expected utility of B for different bid amounts in the first auction. The 

increments in her bid will increase her expected utility initially. Once it reaches 2.67, her 

expected utility begins to drop.  Simple calculations show that the optimal bid for bidder B in the 

first period is 2.67. 

Table 1: Expected utility for a new bidder as a function of first period bids 
 
Bidder B’s bid in first period Expected Utility 
1 1.69 
2 1.89 
2.67 (Optimal Bid) 1.93 
3 1.92 
4(Reservation Value) 1.78 
 
 
Optimal bidding strategy for B 

We define B’s expected utility if she bids x given her reservation value of v as  

∫∫ Φ−Φ−+Φ−=
vx

zdzvxzdzvvxuE
00

)(~)())(1()()());((         (1) 

The first integral is the bidder’s expected payoff in her first auction, where 

)&&)(Pr()( )1()1( zyzxbz <<=Φ , and where )(xb is the other new bidders’ bidding strategy, 

and )1(x  is the largest reservation value among new bidders (excluding bidder B) in auction 1. 
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Hence the largest bid of new bidders is )( )1(xb . Similarly, )1(y  denotes the largest reservation 

value, and hence, also the highest bid among seasoned bidders in auction 1. Similarly, we define 

)1(~x , )1(~y  for the second auction as the highest bids among the new bidders and seasoned bidders 

(excluding B). Therefore, )&&)(Pr()( )1()1( xyxxbx <<=Φ is the probability of B winning her 

first auction. The second term in equation (1) is B’s expected payoff in her second auction. 

 

Solving the first order condition for an interior optimum with respect to x, we have the following 

optimal first period bid x*: 

∫Φ−=
v

dzzvvx
0

* )(~)(              (2) 

where ∫Φ
v

dzz
0

)(~  is bidder B’s expected payoff if she bids in her second auction. 

(Proofs and technical details of all the results are available in the Appendix.) 

 

From the above equation, we may derive the following properties of bidder B’s optimal strategy.  

 

Property 1: *x  is B’s dominant strategy in the sense that it is independent of the strategies of 

other bidders in the first auction. 

 

)(zΦ  includes all the information about the remaining bidders in the first auction. In B’s optimal 

strategy, there is no )(zΦ , meaning that her first period bid is independent of the strategies of all 

other bidders.  The conclusion may seem surprising but it is easy to understand.  If we let 2v  
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represent B’s expected payoff from period 2 auction, B’s “real” valuation of the first auction is 

2vv − . Hence, according to the private-value model, B should bid her “real” valuation.  

Property 2: vx <*                          (3) 

This property explains why some experienced bidders would like to bid less than their 

reservation values in the first auction. Simply put, the option of being able to bid in a second 

auction is valuable.  The smaller the value of this option, the greater is the probability of winning 

in the first auction. Thus the first period bid must trade-off the payoff from the first auction 

against the option value.  

Property 3: *x increases when 2N or 2M increases. 

Here 2N  and 2M  denote the number of new bidders and seasoned bidders respectively.  

Intuitively, when the number of bidders increases, bidder B faces more competition in the second 

auction, which makes the second auction less valuable to her. Hence, B increases her bid in the 

first auction. 

 

3.2 Bidding Strategy under Uncertainty  

It is likely that B may only observe the distribution functions of the number of bidders. In this 

section, we will relax the certainty assumption made in Section 3.1 and check if the properties 

still hold. 

 

Under uncertainty, we may define the expected utility function of B as the following: 

∫∫∫ +Φ−=
x

MdNdzdzvxuE
0

11 )()()()())(( ψξ  

−1( ∫∫∫∫∫ −Φ
v

dzvMdNdx
0

11 )())()()( ψξ )(~)(~)(~
22 MdNdz ψξΦ                             (4) 
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where 1N  and 1M  are the number of new bidders and seasoned bidders in the first auction, 

respectively. )( 1Nξ and )( 1Mψ  are the corresponding distribution functions, respectively. We 

similarly define these parameters and distribution functions for the second auction, with the tilda 

characterizing second auction variables. 

 

As before, we differentiate with respect to x and set equal to zero to derive B’s optimal bidding 

strategy: 

)(~)(~)(~
22

0

* MdNdzdzvx
v

ψξΦ−= ∫∫ ∫                      (5) 

 

B’s bidding strategy has the following properties: 

Property 1: *x  is B’s dominant strategy in the sense that it is independent of 11, MN ,and )(1 xb .  

Property 2: vx <*                         (6)  

Both properties are similar to the case under certainty and have the same intuition. 

Property 3: If 2..2
~NN DSFf , then )~()( 2

*
2

* NxNx >                    (7) 

2..2
~NN DSFf denotes that 2N first order stochastic dominates 2

~N . 2..2
~NN DSFf implies that 

)~()( 22 NENE > .   

 

Property 3 implies that rational bidders would bid higher if they perceive larger expected number 

of bidders in auction 2. This is similar to property 3 in section 3.1. 

 

The next property does not have a counterpart under the certainty case and addresses uncertainty 

about the number of bidders in auction 2.  Suppose B has two alternatives for her second auction. 
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The mean numbers of bidders are the same, but they have different variances. Which alternative 

is more valuable to B? 

Property 4: If 2..2
~NN DSSf , then )~()( 2

*
2

* NxNx <                    (8) 

where 2..2
~NN DSSf  implies that 2

~N  is more “uncertain” than 2N , or more formally, that the 

distribution of 2N second order stochastically dominates the distribution of 2
~N .3   

 

Property 4 implies that a risky or uncertain situation, at least as far as the number of bidders is 

concerned, is more valuable to B, hence B would bid less in the first auction if the second 

auction is more risky.  This may contradict intuition. Why would a bidder prefer a risky situation 

even if she is assumed to be risk-neutral? Let us look at an example first. 

 

Example 2: 

B’s reservation value is 4. For simplicity, we assume that her competitors would bid either 2 or 6 

with 50% probability.   

Alternative 1: She will compete with 2 bidders. In this case, the variance of the number of 

bidders is 0. 

Alternative 2: The number of her competitors is either 1 or 3 with 50% probability for each. The 

mean number of bidders is also 2, but the variance of the number of bidders is 1. So this 

alternative features a more “risky” situation. 

 

If she picks alternative 1, B wins only if both of her competitors bid 2. Hence, her expected 

payoff in the second period is: 0.5*0.5*(4-2)=0.5.  If she picks alternative 2, her expected payoff 

in the second period is as follows: If there is 1 competitor, her expected payoff is: 0.5*0.5*(4-

                                                 
3 For a formal definition of first and second order stochastic dominance see Rothschild and Stiglitz, 1970.  
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2)=0.5.  If there are 3 competitors, her expected payoff is: 0.5*0.5*0.5.0.5*(4-2)=0.125.  So the 

total expected payoff for bidder B is 0.625. Obviously, alternative 2 is more valuable to B. 

 

Why is a risk-neutral bidder better off in a more uncertain situation? The key insight is that she 

has the option to bid in the second auction.  It is a standard result in option theory that the greater 

the uncertainty, the greater the value of the option (Dixit and Pindyk, 1994).  This implies a 

lower first period bid, since the difference between the reservation value, v, and the bid, x, is the 

value of the option. 4 

 

4.0 Data Analysis 

In this section, we present our approach for collecting eBay data and summarize key 

characteristics of the data sets. Then we examine the testable implications drawn from the theory. 

 

3.1 Data Collection 

Online auction firms, like eBay, provide rich information about the bidding history of completed 

auctions. However, there is no well-organized database for public use. This information is 

generally retrieved from web pages. We noticed that some researchers collect data from eBay 

website manually, but this approach is infeasible for collecting large data sets. In this study, we 

developed a software agent to collect data from eBay website on all the auctions of digital 

cameras during January and February of 2001. Since eBay posts all bidding information at the 

end of the auction, our software agent downloaded, parsed, and created data sets for each auction 

                                                 
4 Note that property 3 and property 4 apply to parameter 2M , too.  Thus, if the ratio of the new bidders to seasoned 
bidders is fixed and the only uncertainty is about the number and variance of the total number of bidders, these 
properties also apply to the total number of bidders.   
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monitored during the data collection period. To the best of our knowledge, this is the earliest 

software agent developed for large scale data collection from eBay. 

 

For each auction, two files were retrieved: the first is a file of descriptive information about this 

auction, including what features the item has, when the auction begins and ends, who is the 

auctioneer, how much is the shipping and handling, and so on; the second is a file of the history 

bids of this auction: including who bid, when, and what amount.  

 

Considering the requirements of the theory, we picked digital camera as the study object for the 

following reasons: First, we believe bidders buy these cameras for their own use (in our collected 

data, we did not see any example that a prior winner sells his or her purchase on eBay). In fact, 

most auctioneers of digital cameras sell many items at eBay and eBay actually offers a storefront 

for these merchants. The relationship between sellers and buyers in these auctions can be 

categorized as merchant to consumer. Therefore, these auctions may be treated as private-value 

auctions.  Second, a digital camera is an expensive item on eBay. It is reasonable to assume that 

bidders make serious decisions. Furthermore, digital cameras can be defined by its make and 

model precisely. In other words, two digital cameras with the same make and model can be 

considered identical in quality. 

 

The software agent for collecting data from eBay includes three components: Index Parser, Data 

Fetcher, and Raw Data Parser. The following is a demonstration of how the three components 

work together.  The first step of this program is to search all the index pages about digital 

cameras. eBay maintains index pages listing all the currently completed auctions. These index 

pages are html files with links pointing to the detailed descriptions and historical bids of each 
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auction. The index parser is designed to download these index pages and extract two kinds of 

links: description and historical bids. The data fetcher is used to download all the raw data files 

from the extracted links. The local parser analyzes the two pages for each auction and extracts 

useful data items, and then writes data in local files. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: A schematic description of the data collection agent 
 
 

For each model of digital cameras, we have two corresponding files. The first is a file with the 

descriptions about each auction. The second is a file with the bids in each auction.  The 

description file includes the following variables: 

EBayAuctionID: this is a 10-digit unique number used by eBay to identify each auction; 

Evaluation: eBay maintains the credit rating for each auctioneer. Each eBay buyer is allowed to 

comment on the seller after the fulfillment of the purchase. eBay judges if these comments are 

positive, neutral, or negative. The net number of positive comments is called evaluation point. 

These files also record the beginning date, time and ending date, time, and the duration of the 

auction.   The second file documents the historical bids in each auction. Each bidding record tells 

who bid, when, in what auction, and at what amount. 

 

Index Pages Description 
Pages Bidding History  

Index Parser Data Fetcher 
Data Parser 

Data 
Storage 

Generate URLs Parse Raw 
Data 
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3.2 Summary of Data 

In the following tests, we used a data set of all the eBay auctions selling Canon S10 cameras 

during the first two months of 2001. The following are some simple stats about this data set. 

 

Auctions: 

There were 420 such auctions conducted at eBay. For some of the tests, it is important to identify 

if a bidder was a new bidder or not and if the current auction was the last auction of a particular 

bidder. Therefore, in these tests, we omitted the auctions conducted during the first and last 

weeks, leaving 327 auctions in total. The average number of bidders in each auction, excluding 

auctions that generated no bids and auctions conducted in the first and last weeks was 10.51 and 

the average number of new bidders per auction, was 4.73. The average number of bids was 16.9 

and the average price was $414.7. 

 

Bidders: 

Among the 327 auctions, there were 1599 unique bidders. Of these, 1547 did not bid in previous 

auctions of Canon S10 cameras conducted during the first week of 2001, which means that 52 

bidders were seasoned bidders from the previous period. We note that this does not account for 

bidders who may have changed their user ID during the data collection period. There are 593 

bidders who bid more than one auction during the sample period (Bidders who bid in another 

auction before January 1, 2001 or after February 28, 2001 are not considered.) Of these, 323 

bidders bid in more than two auctions. The most aggressive bidders bid in 44 auctions. The 

average number of auctions that each bidder attended was 2.2.   Table 2 shows the probability 

that a bidder bids in a second auction after the current auction.  It shows that about 40% of the 
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bidders who bid the first auction also participated in a second auction and that a little over half of 

those bidding in a second auction bid in a third auction. 

 

4.3 Testable Implications from Theory 

4.3.1 Test 1: Ascending bids 

The first test of our theory is if bidders bid in an increasing order from earlier auctions to later 

auctions. Our theory is based on a two-auction model. However, in real-world auctions, bidders 

may bid in as many auctions as they would like to. The logic of the two auction model should 

apply as long as the number of auctions is finite, and suggests that a given bidders bid in the 

k+1th auction should be higher than in the kth auction.  

 

Since a bidder is allowed to make more than one bid in an eBay auction, we picked the last bid 

of each bidder. As mentioned earlier, we used 327 auctions in the data set, cutting off the first 

week and last weeks in the time frame. The cutoff auctions are used as comparison groups.  

 

There are two ways to test the theory.  The first is to look at new bidders, using data from the 

327 auctions. We call a bidder a new bidder only if she did not bid in previous auctions for the 

particular digital camera (including the first week of auctions not included in the analysis). For 

these individuals, we test whether their bid in their second auction is greater than their bid in the 

first auction.  The problem with this approach is that since we may incorrectly classify as a new 

bidder someone who has in fact bid for the same object in an earlier (but unobserved by us) 

auction.  However, the time interval between two auctions that a bidder participates is usually 

short, and therefore we do not expect the measurement errors to be large.  
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A somewhat different way to test the theory is to start at the end and ask if the bid in the bidders 

last auction is higher than her bid in the auction before.  We used the same approach as before to 

identify if a bidder is a seasoned bidder. Hence, for each bidder, we compute the bid differences 

between her second and first auction, last and second-last auctions, and second-last and third-last 

auctions.  

 

Table 3 reports the results.  It shows that every sub-test shows significantly positive difference as 

the theory predicts. On average, bidders bid in an increasing order. However, some bidders may 

bid equal amounts or even in a decreasing order. Thus not all bidders act like a rational risk-

neutral bidder. 

 

4.3.2  Test 2: Bidding under uncertainty 

In this paper, we assumed bidders only perceive the distribution functions of the number of 

bidders. These are key variables that condition the bid. In this test, we consider the impact of the 

mean number of bidders and its variability on a new bidder’s strategy. Our theory implies the 

following points:  

 

1) According to property 1, new bidder’s bid is independent of the mean number of bidders and 

its variability in her first auction;  

2) According to properties 3 and 4, both the mean number of bidders and its variability in the 

subsequent second auction affect a new bidder’s decision in the first auction. Larger mean 

number of bidders in the second auction means more competition, therefore less value to new 

bidders, hence new bidders bid higher in the first auction. Similarly, property 4 implies that 

smaller variability also leads to a higher first auction bid. 
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To test these predictions, we estimate a regression equation having bid amount as the left-hand 

side variable with expected number of bidders and the variance in the number of bidders in the 

current and next auctions on the right-hand-side.  However, we are not able to observe the 

market participants’ perceived expected number of bidders (on an auction-by-auction basis) nor 

are we able to observe the perceived variance in the number of bidders.  We are able to observe 

realizations of the number of bidders.  The realization of the number of bidders in an auction is 

(by definition of expectation) the expected number of bidders plus a zero-mean error.  We enter 

the actual number of bidders in the regression in place of its expectation.  Of course, that means 

that we have a measurement error problem.  However, this problem may be corrected by the use 

of two-stage least squares. 

 

Similarly, we are unable to observe the variance of the number of bidders.  Consider equation (3-

1) which we assume predicts the number of bidders in an auction.  For each auction, the variance 

in the number of bidders is just the variance of the error term.  The residual from this regression 

squared (scaled by N-1/N to eliminate sampling bias) has expectation equal to the variance of the 

error term.  So, just as above, using this squared residual in the equation leaves us with an 

equation properly specified, except for measurement error, which, again we can correct via two 

stage least squares.   

 

εβα ++= TXNoOfBidder          (9) 

TX , which provides the instrument vector for both the number of bidders and its variance, is a 

vector that includes the following: 
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Time Variables: T1_8, T8_12, T12_16 and T16_20 are dummy variables showing the duration 

within which the auction is completed. The auction is completed between 1am-8am if T1_8 is 1; 

Saturday or Sunday: The auction is finished on Saturday, if SATURDAY is 1. We use this 

variable under the assumption that each auction may attract more bidders during weekends; 

Length of the Auction:  Days1_2, days3_4, days5_6 and days7_8 are dummy variables 

referring to the length of the auction. If the length of the auction ranges from 1 to 2 days, 

DAYS1_2=1. Intuitively, auctions that last longer may have more bidders; 

Evaluation points: EV_10 is 1 if the evaluation points of this auctioneer are below 10, which 

means this auctioneer is inexperienced; EV_1000 is 1 if the evaluation points of the auctioneer 

are above 1000, indicating that the auctioneer is an experienced one with good reputation. 

 

Tables 4a and 4b show the estimates of equation (9). The results are mostly in line with intuition.  

Auctions with high evaluation points (larger than 1000) tend to get 4.1 more bidders for each 

auction. Auctions with evaluation points less than 10 tend to get 1.75 fewer bidders. Auctions 

that last only one or two days get 4.49 fewer bidders on average. Auctions completed on 

Saturday get 1.75 more bidders. Intuitively, auctions that completed late at night or early in the   

morning should have fewer bidders. However the estimate does not seem to support it.  Online 

auction business operates around the clock, conducting business with nation-wide and some 

international customers. Therefore it is reasonable to conclude that the time effect is weakened in 

online auctions. This argument may also explain why the number of bidders seems not to 

increase on Sunday. 
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Since some of the bids were ridiculously low, we also conducted regression using a partial data 

set.5 We deleted 92 bids that were below $200. Table 5 shows the results, where Bn_1st and 

Bn_2nd refer to the number of bidders in the first and second period, respectively. Var_1st and 

Var_2nd refer to the squared residual of the numbers in the first and second auction, respectively. 

We use two additional control variables.  The first, days  is the number of days between the 

ending date of the auction and Jan. 1st, 2001. Since the value of digital cameras drops over time, 

we include this variable to allow its impact on bidders’ decision. To control the effect of credit 

rating system on bidders’ valuation, we also use EV_10 and EV_1000 as regressors. EV_10 is 1 

if the evaluation points of the first auction are less than 10. EV_1000 is 1 if the evaluation points 

of the first auction are more than 1000. Since the key right hand side variables are measured with 

error, we use two stage least squares estimates. 

  

According to our theory, we anticipate that the coefficients of Bn_1st and Var_1st should be zero 

and that of Bn_2nd positive and Var_2nd negative. A larger predicted number of bidders in second 

auction causes new bidders to raise their bids in the first auction. Recall that the intuition is that a 

larger number of bidders implies more competition in the second auction, lowering the option 

value of the second auction. On the contrary, a larger variance of the number increases the option 

value, causing new bidders to decrease their bids in the first auction.  

 

Table 5 shows that the coefficient of Bn_2nd = 4.88 and that of Var_2nd  = -5.20, and both are 

statistically significant.  To get some sense of the quantitative impact, these estimates imply that 

if the expected number of bidders in the second auction increases by 1, a new bidder’s bid in the 

first auction increases by $4.88. If variance increases by 1, the bid decreases by $5.20. The 

                                                 
5We also conducted regression on complete data set, which shows similar result  
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estimates of Bn_1st and Var_1st are not significantly different from 0, which is as we expected. 

However, note that the estimated coefficient of Bn_1st is fairly large. If the expected number of 

bidders in the first auction increases by 1, the bid in the first auction decreases by $2.95. One 

explanation is the weakness of the data. In the test, we assume that bidders’ last bid show the 

maximum bid that they wanted to bid truthfully. However, some bidders may submit a very low 

bid, well below the maximum she wants to bid in the first period, and then leave the auction for 

some time.  When she returns to the auction, the ongoing bid may already have surpassed not 

only her recorded bid but even her reservation value. In this case, our data will only show her 

attempted bid, not the actual desired first auction bid.  Moreover, this outcome is naturally more 

likely the greater the number of bidders in the auction.  

 

Since bidders’ experiences may affect bidders’ bidding behavior, we also conducted test on a 

partial data set, which includes only experienced bidders’ bids. eBay maintains a rating for each 

bidder, just as for auctioneers. Bidders are awarded star rating if they achieve more than 10 net 

points. Table 6 shows regression of star bidders. During our data collection period, we only 

captured a fraction of bidders’ ratings, hence this test only represents results on the data we have. 

Table 6 shows that experienced bidders do not act very differently from average bidders, 

indicating that our test results are robust.  

 

5.0 Conclusions 

In this paper, we study optimal bidding strategy for a rational, risk-neutral bidder in sequential 

online auctions. Our theoretical approach is premised on two key differences between online and 

non-online sequential auctions.  Specifically, the number of bidders in online auctions is likely to 

vary stochastically, and any given auction is likely to have bidders who have bid in earlier 
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auctions and others who have not.  We derive the optimal strategy and show that this is 

consistent with an appropriately modified version of the standard private value second price 

auction model.   

 

The major contribution of this paper is the study of how the uncertainty may affect bidders’ 

bidding strategy. Volatility in the number of bidders in the second period lowers the first period 

bid. To test the implications of the theory, we collected data from eBay, using a software agent. 

The results support the implications of the theory.  However, bidders seem to act rationally only 

on average. Some bidders, as we noticed, adopt different strategies, which contradict our theory. 

This is worth further study. Further development of the model should allow bidders to be risk-

averse, or risk loving. Extending this model to multiple sequential auctions is another interesting 

research question, as is allowing more general utility functions where the utility of the second 

object is not set to zero. 

 

 



 26 

Table 2: Probability of bidding in subsequent auctions 

 
1st!2nd Auction 2nd !3rd Auction 3rd!More than 4 auctions 
38.33% 54.46% 52.25% 
 
 
Table 3: Difference between bid amounts in successive auctions.   
 
Test Bid Difference Standard Error Number of 

individuals 
Second-First $10.54 3.04 593 
Last-Second Last $10.89 3.45 541 
Second Last-Third Last $6.19 5.29 311 
 
 
Table 4a:  Variables used in regression analysis 
 
Variable Description 
T1_8 = 1 if auction completed between 1 AM and 8 AM, = 0 otherwise 
T_8_12 = 1 if auction completed between  8AM and 12 PM, = 0 otherwise 
T12_16 = 1 if auction completed between 12 PM and 4 PM, = 0 otherwise 
T16_20 = 1 if auction completed between 4 PM and 10 PM, = 0 otherwise 
SATURDAY = 1 if auction completed on a Saturday, = 0 otherwise 
SUNDAY = 1 if auction completed on a Sunday, = 0 otherwise 
DAYS1_2 = 1 if auction lasts between 1 and 2 days, = 0 otherwise 
DAYS3_4 = 1 if auction lasts between 3 and 4 days, = 0 otherwise 
DAYS5_6 = 1 if auction lasts between 5 and 6 days, = 0 otherwise 
DAYS7_8 = 1 if auction lasts between 7 and 8 days, = 0 otherwise 
EV_10 =1 if seller has fewer than 10 evaluation points, =0 otherwise 
EV_1000 =1 if seller has more than 1000 evaluation points, =0 otherwise 
Bn_1st = Predicted number of sellers in first auction  
Var_1st = Predicted variance in number of sellers in first auction 
Bn_2nd = Predicted number of sellers in second auction 
Var_2nd = Predicted variance in number of sellers in second auction 
 
Table 4b: Determinants of the number of bidders in an auction: OLS estimates 
Dependent variable: Number of bidders  
 
 Variable Estimate Std. error  T statistic 
Constant  7.31 1.34  5.46 
T1_8 -0.95 0.95 -0.99 
T8_12  0.24 1.16  0.21 
T12_16  0.00 0.82  0.00 
T16_20  0.14 0.83  0.17 
Saturday  1.75 1.25  1.40 
Sunday  0.04 0.86  0.04 
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Days1_2 -4.49 1.44 -3.11 
Days3_4  1.57 1.27  0.98 
Days5_6  1.49 1.40  1.07 
Days7_8  1.13 1.29  0.99 
Ev_10 -1.75 0.71 -2.46 
Ev_1000  4.10 0.81  5.06 
Number of observations: 420 
 
 
Table 5: First auction bid amounts of new bidders - Two Stage Least Squares estimates.  
Dependent variable: Final bid amount of bidder i in first auction, bids greater than $200 
only. 
 
Model   Coefficients Std. Error

   
T-Statistic 

Constant 318.76 19.63  16.24 
Days   0.08   1.33    0.06 
Bn_1st  -2.95   1.89   -1.56 
Var_1st   1.32   2.20    0.60 
Bn_2nd   4.88   0.93    5.25 
Var_2nd  -5.20   2.03   -2.56 
Ev_10  -7.18   8.62   -0.83 
Ev_1000  31.05 12.86    2.42 
Number of observations: 501 
 
 
Table 6: First auction bid amounts of new bidders, star bidders only - Two Stage Least 
Squares estimates. 
Dependent variable: Final bid amount of bidder i in first auction 
 
Model   Coefficients  Std. Error

   
T-Statistic 

Constant 316.25 18.98 16.66 
Days     0.08   1.58   0.14 
Bn_1st   -2.82   2.20  -1.28 
Var_1st     1.42   2.61   0.54 
Bn_2nd     5.27   1.08   4.87 
Var_2nd    -5.88   2.19  -2.68 
Ev_10  -12.52 10.19  -1.23 
Ev_1000    33.87 15.15    2.24 
Number of observations: 117 
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Appendix : Proofs for Section 3 
 
1. Proofs for Section 3.1 

Assuming constant parameters, bidder B’s optimal bidding strategy is: 
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Proof: 
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)1(x  denotes the new bidders with largest reservation value in auction 1, excluding bidder B; )1(y  

denotes the seasoned bidders with largest reservation value in auction 1. Therefore, )(zΦ is the 

winning probability of bidder B in auction 1. Similarly, we define )(~ zΦ as the winning 

probability of bidder B in auction 2, given that she loses the first auction. 

 

To solve bidder B’s optimal strategy, we consider the first order condition: 
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Using integration by parts, we have the simplified form: 
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Property 3: *x increases when 2N or 2M increases. 

Proof: 

)(~)(~)(~ xFxFx zw≡Φ          

)(~ xFw denotes the probability that bidder B beats all the new bidders; )(~ xFz  denotes the 

probability that bidder B beats all the seasoned bidders.      

))(()(~ 1
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Here )(2 xb is new bidder’s bidding function in auction 2. 2N  and 2M  are the number of new and 

seasoned bidders in auction 2, respectively. G(x) denotes the distribution function of seasoned 

bidder’s reservation value. (The detailed derivation of )(~ xFw and )(~ xFz is skipped here for 

simplicity of reading.)  Therefore, )())(()(~
22 1

2 xGxbFx MN −=Φ .  Since 1))((0 1
2 << − xbF  and 

0<G(x)<1, )(~ zΦ , as a function of  2N and 2M , is monotone decreasing. Hence *x increases 

when 2N or 2M increases.  

  

2 Proofs for Section 3.2  

Under uncertainty about N and M, bidder B’s optimal bidding strategy is:  
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As before, we solve bidder B’s optimal bidding strategy: 

 

=
∂

∂
x

xuE )((  

∫∫ ∫

∫∫∫∫
Φ−

Φ′−Φ′−
v

MdNdzdzv

MdNdxMdNdxxv

0
22

1111

)(~)(~)(~)(

*)()()()()()()(

ψξ

ψξψξ
 

Let 0)((
*

*

=
∂

∂
x

xuE  

)(~)(~)(~
22

0

* MdNdzdzvx
v

ψξΦ−= ∫∫ ∫  

 

Property 3: If 2..2
~NN DSFf , then )~()( 2

*
2

* NxNx >       

2..2
~NN DSFf denotes that 2N first order stochastic dominates 2

~N . 2..2
~NN DSFf implies 
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Proof: 

Note that )(~)(~)(~
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is obvious that ))(( 2
* NHEx = . As a function of 2N , )(~ zΦ , is monotone decreasing.  

Note that )( 2NH is monotone increasing in N2.   

 

Given that 2..2
~NN DSFf , we will prove that the following is also true: )~()( 2..2 NHNH DSFf   

Note that for any z, we have: 
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Thus, for any z, ))~(Pr())(Pr( 22 zNHzNH >≥> and so )~()( 2..2 NHNH DSFf  

It follows that )~()( 2
*
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2..2
~NN DSSf  implies that auction 2 with parameter 2

~N  is more risky than auction 2 with 

parameter 2N .  
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We define the following function: ∫ ∫ ∫ Φ= ).(~)(~)(~)( 22
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convex in 2N , it follows from the properties of second order stochastic dominance that 

)( 2NK will increase as the distribution of 2N  becomes riskier (while keeping the mean the 

same).  Therefore, 2
* (NKvx −= ) will decrease.  Thus, the bidder bids less under risky 

situations.  Hence, )~()( 2
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