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Abstract

In this paper, we consider nonparametric identification and estimation of first-price

auction models when N∗, the number of potential bidders, is unknown to the researcher.

Exploiting results from the recent econometric literature on models with misclassifica-

tion error, we develop a nonparametric procedure for recovering the distribution of bids

conditional on unobserved N∗. Monte Carlo results illustrate that the procedure works

well in practice. We present evidence from a dataset of procurement auctions, which

shows that accounting for the unobservability of N ∗ can lead to meaningful differences

in the estimates of bidders’ profit margins.

In many auction applications, researchers do not observe N ∗, the number of bidders in

the auction. (In the parlance of the literature, N ∗ is the “number of potential bidders”, a

terminology we adopt in the remainder of the paper.) The most common scenario obtains

under binding reserve prices. When reserve prices bind, the number of potential bidders

N∗, which is observed by auction participants and influences their bidding behavior, differs

from the observed number of bidders A (≤ N ∗), which is the number of auction participants

whose bids exceed the reserve price. Other scenarios which would cause the true level of

∗The authors can be reached at yhu@jhu.edu and mshum@jhu.edu. We thank Ken Hendricks, Harry

Paarsch, Isabelle Perrigne, Jean-Marc Robin, Quang Vuong, and seminar participants at Brown, Caltech,

UC-Irvine, Iowa, NC State, and SITE (Stanford) for helpful comments. Guofang Huang provided exceptional

research assistance.
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competition to be unobserved (and differ from the observed level of competition) include

bidding or participation costs. In other cases, the number of auction participants may

simply not be recorded in the researcher’s dataset.

In this paper, we consider nonparametric identification and estimation of first-price auction

models when N ∗ is unobserved. Using recent results from the literature on misclassified

regressors, we show how the equilibrium distribution of bids, given the unobserved N ∗, can

be identified and estimated. In the case of first-price auctions, these bid distributions esti-

mated using our procedure can be used as inputs into established nonparametric procedures

(Guerre, Perrigne, and Vuong (2000), Li, Perrigne, and Vuong (2002)) to obtain estimates

of bidders’ valuations.

Accommodating the non-observability of N ∗ is important for drawing valid policy implica-

tions from auction model estimates. Because N ∗ is the level of competition in an auction,

using a mismeasured value for N ∗ can lead to wrong implications about the degree of com-

petitiveness in the auction, and also the extent of bidders’ markups and profit margins.

This will be shown in the empirical illustration below.

Existing research has dealt with the unobservability of N ∗ in several ways. In the parametric

estimation of auction models, the functional relationship between the bids b and number of

potential bidders N ∗ is explicitly parameterized, so that not observing N ∗ need not be a

problem. For instance, Laffont, Ossard, and Vuong (1995) used a goodness-of-fit statistic to

select the most plausible value of N ∗ for French eggplant auctions. Paarsch (1997) treated

N∗ essentially as a random effect and integrates it out over the assumed distribution in his

analysis of timber auctions.

In a nonparametric approach to auctions, however, the relationship between the bids b

and N∗ must be inferred directly from the data, and not observing N ∗ (or observing N ∗

with error) raises difficulties. Within the independent private-values (IPV) framework, and

under the additional assumption that the unobserved N ∗ is fixed across all auctions (or

fixed across a known subset of the auctions), Guerre, Perrigne, and Vuong (2000) showed

how to identify N ∗ and the equilibrium bid distribution in the range of bids exceeding the

reserve price. Hendricks, Pinkse, and Porter (2003) allowed N ∗ to vary across auctions, and

assume that N ∗ = L, where L is a measure of the number of potential bidders which they

construct.

Most closely related to our work is a paper by Song (2004). She solved the problem of

the nonparametric estimation of ascending auction models in the IPV framework, when
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the number of potential bidders N ∗ is unknown by the researcher. She showed that the

distribution of valuations can be recovered from observation of any two valuations of which

rankings from the top is known. Her methodology accommodates auctions where N ∗ need

not be fixed across auctions, which is also the case considered in this paper.1

In this paper, we consider a new approach to nonparametric identification and estimation

of first-price auction models in which the number of bidders N ∗ is observed by bidders, but

unknown to the researcher. We use recent results from the recent econometric literature on

models with misclassification error; e.g. Mahajan (2006), Hu (2006). Drawing an analogy

between the misclassification problem and an auction model where the potential number

of bidders N ∗ is observed with error, we develop a nonparametric procedure for recovering

the distribution of bids conditional on unobserved N ∗ which requires neither N ∗ to be

fixed across auctions, nor for an (assumed) perfect measure of N ∗ to be available. Our

procedure requires two auxiliary variables: first, an imperfect noisy proxy for N ∗; second,

an instrument, which could be a second imperfect measure of N ∗.

For first-price auctions, allowing the unobserved N ∗ to vary across auctions is important

because N ∗ is the level of competition perceived by the bidders, and affects their equi-

librium bidding strategies. Hence, not observing N ∗ implies that the observed bids are

drawn from a mixture distribution, where the “mixing densities” g(b|N ∗) and the “mixing

weights” Pr(A|N ∗) are both unknown. This motivates the application of methods devel-

oped for models with a misclassified regressor, where (likewise) the observed outcomes are

drawn from a mixture distribution. In contrast, when N ∗ is unknown, but fixed across

auctions, the observed bids are drawn from a homogeneous sample, so that methods from

the misclassification literature would not be needed.

In a different context, Li, Perrigne, and Vuong (2000) applied deconvolution results from the

(continuous) measurement error literature to identify and estimate conditionally indepen-

dent auction models in which bidders’ valuations have common and private (idiosyncratic)

components. Krasnokutskaya (2005) applied these ideas to estimate auction models with

unobserved heterogeneity. To our knowledge, however, our paper is the first application

of (discrete) measurement error results to non-observability of the number of bidders, in

auction models.

The issues considered in this paper are close to those considered in the literature on entry

1Song (2006) showed that the top two bids are also enough to identify first-price auctions where the

number of active bidders is stochastic and uncertain from the bidders’ perspective, under the assumption

that the the number of potential bidders is fixed.
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in auctions: eg. Li (2005), Li and Zheng (2006), Athey, Levin, and Seira (2005), Krasnokut-

skaya and Seim (2005), Haile, Hong, and Shum (2003). While the entry models considered

in these papers differ, their one commonality is to model more explicitly bidders’ participa-

tion decisions in auctions, which can cause the number of observed bidders A to differ from

the number of potential bidders N ∗. For instance, Haile, Hong, and Shum (2003) consider

an endogenous participation model in which the number of potential bidders is observed

by the researcher, and equal to the observed number of bidders (i.e., N ∗ = A), so that

non-observability of N ∗ is not a problem. However, A is potentially endogenous, because

it may be determined in part by auction-specific unobservables which also affect the bids.

By contrast, in this paper we assume that N ∗ is unobserved, and that N ∗ 6= A, but we do

not consider the possible endogeneity of N ∗.2

In section 2, we describe our auction framework. In section 3, we present the main identifi-

cation results, and describe our estimation procedure. In section 4, we provide Monte Carlo

evidence of our estimation procedure, and discuss some practical implementation issues. In

section 5, we present an empirical illustration. In section 6, we consider extensions of the

approach to scenarios where only the winning bid is observed. Section 7 concludes.

1 Model

In this paper, we consider the case of first-price auctions under the symmetric independent

private values (IPV) paradigm, for which identification and estimation are most transparent.

For a thorough discussion of identification and estimation of these models when the number

of potential bidders N ∗ is known, see Paarsch and Hong (2006, Chap. 4). For concreteness,

we focus on the case where a binding reserve price is the reason why the number of potential

bidders N ∗ differs from the observed number of bidders, and is not known by the researcher.

There are N ∗ bidders in the auction, with each bidder drawing a private valuation from the

distribution F (x) which has support [x, x̄]. N ∗ can vary freely across the auctions. There

is a reserve price r, assumed to be fixed across all auctions, where r > x.3 The equilibrium

2In principle, we recover the distribution of bids (and hence the distribution of valuations) separately

for each value of N∗, which accommodates endogeneity in a general sense. However, because we do not

model the entry process explicitly (as in the papers cited above), we do not deal with endogeneity in a direct

manner.
3Our estimation methodology can potentially also be used to handle the case where N ∗is fixed across all

auctions, but r varies freely across auctions.
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bidding function for bidder i with valuation xi is

b(xi;N
∗)





= xi −
R xi

r
F (s)N∗−1ds

F (xi)N∗−1 for xi ≥ r

0 for xi < r.
(1)

Hence, the observed number of bidders A ≡ ∑N∗

i=1 1(xi > r), the number of bidders whose

valuations exceed the reserve price.

For this case, the equilibrium bids are i.i.d. and, using the change-of-variables formula, the

density of interest g(b|N ∗, b > r) is equal to

g(b|N∗, b > r) =
1

b′(ξ(b;N ∗);N∗))

f(ξ(b;N ∗))

1 − F (r)
, for b > r (2)

where ξ(b;N ∗) denotes the inverse of the equilibrium bid function b(·;N ∗) evaluated at b.

In equilibrium, each observed bid from an N ∗-bidder auction is an i.i.d. draw from the

distribution given in Eq. (2), which does not depend on A, the observed number of bidders.

We propose a two-step estimation procedure. In the first step, the goal is to recover the

density g(b|N ∗; b > r) of the equilibrium bids, for the truncated support (r,+∞). (For

convenience, in what follows, we suppress the conditioning truncation event b > r.) To

identify and estimate g(b|N ∗), we use the results from Hu (2006).

In second step, we use the methodology of Guerre, Perrigne, and Vuong (2000) to recover

the valuations x from the joint density g(b|N ∗). For each b in the marginal support of

g(b|N∗), the corresponding valuation x is obtained by

ξ (b,N∗) = b+
1

N∗ − 1

[
G (b|N∗)

g (b|N∗)
+

F (r)

1 − F (r)
· 1

g (b|N∗)

]
. (3)

For most of this paper, we focus on the first step of this procedure, because the second step

is a straightforward application of standard techniques.

2 Nonparametric identification

In this section, we apply the results from Hu (2006) to show the identification of the con-

ditional equilibrium bid distributions g(b|N ∗), conditioned on the unobserved number of

potential bidders N ∗, as well as the conditional distribution of N |N ∗.

We require two auxiliary variables:
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1. a proxy N , which is a mismeasured version of N ∗

2. an instrument Z, which could be a second corrupted measurement of N ∗.

The variables (N,Z) must satisfy three conditions. The first two conditions are given here:

Condition 1 g(b|N ∗, N, Z) = g(b|N ∗).

This assumption implies that N or Z affects the equilibrium density of bids only through

the unknown number of potential bidders. In the econometric literature, this is known as

the “nondifferential” measurement error assumption.

In what follows, we only consider values of b such that g(b|N ∗) > 0, for N ∗ = 2, . . . ,K.

This requires, implicitly, knowledge of the support of g(b|N ∗), which is typically unknown

to the researcher. Below, when we discuss estimation, we present a two-step procedure

which circumvents this problem.

Condition 2 g(N |N ∗, Z) = g(N |N ∗).

This assumption implies that the instrument Z affects the mismeasured N only through the

number of potential bidders. Roughly, because N is a noisy measure of N ∗, this condition

requires that the noise is independent of the instrument Z, conditional on N ∗.

Examples of N and Z Here we consider several examples of variables which could fulfill

the roles of the special variables N and Z.

1. One advantage to focusing on the IPV model is that A, the observed number of bidders,

can be used in the role of N . Particularly, for a given N ∗, the sampling density of any

equilibrium bid exceeding the reserve price — as given in Eq. (2) above — does not depend

on A, so that Condition 1 is satisfied.4 A good candidate for the instrument Z could be a

noisy estimate of the potential number of bidders:

Z = h(N∗, η).

In order to satisfy conditions 1 and 2, we would require b ⊥ η|N ∗, and also A ⊥ η|N ∗.

Because we are focused on the symmetric IPV model in this paper, we will consider this

4This is no longer true in affiliated value models.

6



example in the remainder of this section, and also in our Monte Carlo experiments and in

the empirical illustration.

2. More generally, N and Z could be two noisy measures of N ∗:

N = f(N∗, υ)

Z = h(N∗, η).
(4)

In order to satisfy conditions 1 and 2, we would require b ⊥ (υ, η)|N ∗, as well as η ⊥ υ|N ∗.

3. Another possibility is that N is a noisy measure of N ∗, as in example 2, but Z is an

exogenous variable which directly determines participation:

N = f(N∗, υ)

N∗ = k(Z, ν).
(5)

In order to satisfy conditions 1 and 2, we would require b ⊥ (υ, Z)|N ∗, as well as υ ⊥ Z|N ∗.

This implies that Z is excluded from the bidding strategy, and affects bids only through its

effect on N ∗.

Furthermore, in order for the second step of the estimation procedure (in which we recover

bidders’ valuations) to be valid, we also need to assume that b ⊥ ν|N ∗. Importantly, this

rules out the case that the participation shock ν is a source of unobserved auction-specific

heterogeneity.5 Note that ν will generally be correlated with the bids b. �

We observe a random sample of
{
~bt, Nt, Zt

}
, where ~bt denotes the vector of observed bids

{b1t, b2t, . . . , bAtt}. (Note that we only observe At bids for each auction t.) We assume the

variable N , Z, and N ∗ share the same support N = {2...,K} . Here K can be interpreted

as the maximum number of bidders, which is fixed across all auctions.6

By the law of total probability, the relationship between the observed distribution g(b,N,Z)

and the latent densities is as follows:

g(b,N,Z) =

K∑

N∗=2

g(b|N∗, N, Z)g(N |N ∗, Z)g(N ∗, Z). (6)

5In the case when N∗ is observed, correlation between bids and the participation shock ν can be accom-

modated, given additional restriction on the k(· · · ) function. See Guerre, Perrigne, and Vuong (2005) and

Haile, Hong, and Shum (2003) for details. However, when N∗ is unobserved, as is the case here, it is not

clear how to generalize these results.
6Our identification results still hold if Z has more possible values than N and N ∗.

7



Under conditions 1 and 2, Eq. (6) becomes

g(b,N,Z) =

K∑

N∗=2

g(b|N∗)g(N |N ∗)g(N∗, Z). (7)

We define the matrices

Gb,N,Z = [g(b,N = i, Z = j)]i,j ,

GN |N∗ = [g (N = i|N ∗ = k)]i,k ,

GN∗,Z = [g (N∗ = k, Z = j)]k,j ,

GN,Z = [g (N = i, Z = j)]i,j ,

and

Gb|N∗ =




g(b|N∗ = 2) 0 0

0 ... 0

0 0 g(b|N ∗ = K)


 . (8)

All of these are (K − 1)-dimensional square matrices. With this notation, Eq. (7) can be

written as

Gb,N,Z = GN |N∗Gb|N∗GN∗,Z . (9)

Condition 2 implies that

g(N,Z) =
K∑

N∗=2

g(N |N∗)g(N∗, Z), (10)

which, using the matrix notation above, is equivalent to

GN,Z = GN |N∗GN∗,Z . (11)

Equations (9) and (11) summarize the unknowns in the model, and the information in the

data. The matrices on the left-hand sides of these equations are quantities which can be

recovered from the data, whereas the matrices on the right-hand side are the unknown

quantities of interest. As a counting exercise, we see that the matrices Gb,N,Z and GN,Z

contain 2(K − 1)2 − (K − 1) known elements, while the GN |N∗ , GN∗,Z and Gb|N∗ matrices

contain at most a total of also 2(K − 1)2 − (K − 1) unknown elements. Hence, in principle,

there is enough information in the data to identify the unknown matrices. The key part of

the proof below is to characterize the solution and give conditions for uniqueness. Moreover,

the proof is constructive in that it immediately suggests a way for estimation.

The third condition which the special variables N and Z must satisfy is a rank condition:
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Condition 3 Rank (GN,Z) = K − 1.

Note that this condition is directly testable from the sample. It essentially ensures that

the instrument Z affects the distribution of the proxy variable N (resembling the standard

instrumental relevance assumption in usual IV models).

Because Eq. (11) implies that

Rank (GN,Z) ≤ min
{
Rank

(
GN |N∗

)
, Rank (GN∗,Z)

}
, (12)

it follows from Condition 3 that Rank
(
GN |N∗

)
= K − 1 and Rank (GN∗,Z) = K − 1. In

other words, the matrices GN,Z , GN |N∗ , and GN∗,Z are all invertible. Therefore, we have

the key equation

Gb,N,ZG
−1
N,Z = GN |N∗Gb|N∗G−1

N |N∗ . (13)

The matrix on the left-hand side can be formed from the data. For the expression on

the right-hand side, note that because Gb|N∗ is diagonal (cf. Eq. (8)), the RHS matrix

represents an eigenvalue-eigenvector decomposition of the LHS matrix. This is the key

representation which will facilitate estimation of the unknown matrices GN |N∗ and b|N∗ .

In order to make the eigenvalue-eigenvector decomposition in Eq. (13) unique, we assume

that

Condition 4 For any i, j ∈ N , the set {(b) : g(b|N ∗ = i) 6= g(b|N ∗ = j)} has nonzero

Lebesgue measure whenever i 6= j.

This assumption guarantees that the eigenvalues in Gb|N∗ are distinctive for some bid b,

which ensures that the eigenvalue decomposition in Eq. (13) exists and is unique, for

some bid b. This assumption guarantees that all the linearly independent eigenvectors are

identified from the decomposition in Eq. (13). Suppose that for some value b̃, g(̃b|N∗ = i) =

g(̃b|N∗ = j), which implies that the two eigenvalues corresponding to N ∗ = i and N ∗ = j

are the same, so that the two corresponding eigenvectors cannot be uniquely identified. This

is because any linear combination of the two eigenvectors is still an eigenvector. Assumption

4 guarantees that there exists another value b such that g(b|N ∗ = i) 6= g(b|N ∗ = j). Notice

that Eq. (13) holds for every b, implying that g(b̃|N∗ = i) and g(b|N ∗ = i) correspond to

the same eigenvector, as do g(b̃|N∗ = j) and g(b|N ∗ = j). Therefore, although we cannot
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use b̃ to uniquely identify the two eigenvectors corresponding to N ∗ = i and N ∗ = j, we

can use the value b to identify them.

Eq. (13) shows that an eigenvalue decomposition of the observed Gb,N,ZG
−1
N,Z matrix re-

covers the unknown GN |N∗ and Gb|N∗ matrices, with Gb|N∗ being the diagonal matrix of

eigenvalues, and GN |N∗ being the corresponding matrix of eigenvectors. This identifies

Gb|N∗ and GN |N∗ up to a normalization and ordering of the columns of the eigenvector

matrix GN |N∗ .

There is a clear appropriate choice for the normalization of the eigenvectors; because each

column of GN |N∗ should add up to one, we can multiply each element GN |N∗(i, j) by the

reciprocal of the column sum
∑

iGN |N∗(i, j), as long as GN |N∗(i, j) is non-negative.

The appropriate ordering of the columns of GN |N∗ is less clear, and in order to complete

the identification, we need an additional assumption which pins down the ordering of these

columns. One such assumption is:

Condition 5 N ≤ N ∗.

The condition N ≤ N ∗ is natural, and automatically satisfied, when N = A, the observed

number of bidders. This condition implies that for any i, j ∈ N

g (N = j|N ∗ = i) = 0 for j > i. (14)

In other words, GN |N∗ is an upper-triangular matrix. Since the triangular matrix GN |N∗ is

invertible, its diagonal entries are all nonzero, i.e.,

g (N = i|N ∗ = i) > 0 for all i ∈ N . (15)

Equations 14 and 15 imply that n∗ is the 100th percentile of the discrete distribution

g (N |N∗ = n∗), i.e.,

n∗ = inf

{
ñ∗ :

en∗∑

i=2

g (N = i|N ∗ = n∗) ≥ 1

}
.

In other words, Condition 5 implies that, once we have the columns of GN |N∗ obtained as

the eigenvectors from the matrix decomposition (13), the right ordering can be obtained by

re-arranging these columns so that they form an upper-triangular matrix.
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Hence, under Conditions 1-5, Gb|N∗ , GN |N∗ and also GN∗,Z are identified (the former point-

wise in b).

Before proceeding, we note that in the key equation (13), the matrixGN |N∗ is identical for all

b, and because this equation holds for all b, there is a large degree of overidentification in this

model. This suggests the possibility of achieving identification with weaker assumptions.

In particular, it may be possible to relax the non-differentiability condition 1 so that we

require g(b|N ∗, N, Z) = g(b|N ∗) only at one particular value of b. We are exploring the

usefulness of such possibilities in ongoing work.

3 Estimation of bid densities g(b|N∗): two-step procedure

In this section, we give details on the estimation of (b|N ∗) given observations of (b,N,Z),

for the symmetric independent private values model. As shown in the previous section,

the distributions g(b|N ∗), g(N |N ∗) and g(N ∗, Z) are nonparametrically identified from the

observed distribution g(b,N,Z) as follows:

g(b,N,Z) =
K∑

N∗=2

g(b|N∗)g(N |N ∗)g(N∗, Z). (16)

Note that the bid b may have a different unknown support for different N ∗. We assume

g(b|N∗) =

{
> 0 for b ∈ [r, uN∗ ]

= 0 otherwise
,

where uN∗ is unknown. This fact makes the direct estimation of g(b|N ∗) difficult. Therefore,

we propose a two-step estimation procedure.

Step One In Step 1, we estimate the eigenvector matrix GN |N∗ . We consider the condi-

tional expectation of the bid b to avoiding directly estimating the unknown density g(b|N ∗)

with unknown support. We define

GEb,N,Z = [E (b|N = i, Z = j) g(N = i, Z = j)]i,j , (17)

and

GEb|N∗ =




E [b|N∗ = 2] 0 0

0 ... 0

0 0 E [b|N ∗ = K]


 .
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From equation 7, we have

E(b|N,Z)g(N,Z) =

K∑

N∗=2

E(b|N∗)g(N |N ∗)g(N∗, Z). (18)

Therefore, the same diagonalization result in equation 13 holds for equation 18 with Gb,N,Z

and Gb|N∗ replaced with GEb,N,Z and GEb,N∗ as follows:

GEb,N,ZG
−1
N,Z = GN |N∗GEb|N∗G−1

N |N∗ . (19)

That means we may have

GN |N∗ = ψ
(
GEb,N,ZG

−1
N,Z

)
,

where ψ (·) denotes the mapping from a square matrix to its eigenvector matrix following

the identification procedure in the previous section. As shown in Hu (2006), the function

ψ (·) is a nonstochastic analytic function. Therefore,we may estimate GN |N∗ as follows:

ĜN |N∗ := ψ
(
ĜEb,N,ZĜ

−1
N,Z

)
, (20)

where ĜEb,N,Z and ĜN,Z may be constructed directly from the sample. In our empirical

example, we use an estimate for ĜEb,N,Z as follows:

ĜEb,N,Z =


 1

T

∑

t

1

Nj

Nj∑

i=1

bit1(Nt = Nj, Zt = Zk)




j,k

.

Since we don’t have a covariate in the simulation, all the entries in the matrices in the

equation 18 are constants. We may then use the eigenvalue/vector decomposition of the

left-hand side ĜEb,N,ZĜ
−1
N,Z to directly estimate ĜN |N∗ . When there are covariates w, we

may also use a semi-nonparametric method (Ai and Chen (2003)) to estimate g(N |N ∗, w).

This alternative is presented in the Appendix.

Step Two In Step 2, we estimate g(b|N ∗). With GN |N∗ estimated by ĜN |N∗ in step 1,

we may estimate g(b|N ∗) directly even without knowing its support. From equation 13, we

have for any b

G−1
N |N∗

(
Gb,N,ZG

−1
N,Z

)
GN |N∗ = Gb|N∗ . (21)
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Define eN∗ = (0, ...0, 1, 0, ..., 0)T , where 1 is at the N ∗-th position in the vector. We have

g(b|N∗) = eTN∗

[
G−1

N |N∗

(
Gb,N,ZG

−1
N,Z

)
GN |N∗

]
eN∗ . (22)

which holds for all b ∈ (−∞,∞). This equation also implies that we may identify the upper

bound uN∗ as follows:

uN∗ = sup {b : g(b|N ∗) > 0} .

Finally, we may estimate g(b|N ∗) as follows:

ĝ(b|N ∗) := eTN∗

[
Ĝ−1

N |N∗

(
Ĝb,N,ZĜ

−1
N,Z

)
ĜN |N∗

]
eN∗ ,

where ĜN |N∗ is estimated in step 1 and Ĝb,N,Z may be constructed directly from the sample.

In our empirical work, we use a kernel estimate for Ĝb,N,Z = [ĝb,N,Z (b,Nj , Zk)]j,k:

ĝb,N,Z (b,Nj, Zk) =

[
1

Th

∑

t

1

Nt

Nt∑

i=1

K

(
b− bit
h

)
1(Nt = Nj , Zt = Zk)

]
.

We analyze the asymptotic properties of our estimator in detail in the appendix. Here we

provide a brief summary. Given the discreteness of N , Z, and the use of sample average of

b|N,Z to construct Ĝb,N,Z (via. Eq. (17)), the estimates of ĜN |N∗ (obtained using Eq. (20))

and ĜN,Z should converge at a
√
T -rate (where T denotes the total number of auctions).

Hence, pointwise in b, the convergence properties of ĝ(b|N ∗) to g(b|N ∗), where ĝ(b|N ∗) is

estimated using Eq. (22), will be determined by the convergence properties of the kernel

estimate of g(b,N,Z), which converges slower than
√
T . We also present the uniform con-

vergence rate of ĝ(b|N ∗) in the appendix. Similarly, the pointwise asymptotic distribution

of ĝ(b|N ∗) is also determined by that of the kernel estimator of g(b,N,Z). In fact, we

show in the appendix that (Th)1/2 [ĝ(b|N ∗) − g(b|N ∗)] for a given b converges to a normal

distribution.

As shown in the appendix, the convergence properties of our estimator relies on the smooth-

ness of g(b|N,Z). This conditional distribution is a mixture of distributions g(b|N ∗) with a

different support for a different N ∗. Therefore, the smoothness of g(b,N,Z) requires that of

g(b|N∗) on not just its support [r, uN∗ ] but the largest support [r, uK ]. When the supports of

g(b|N∗) are known, we only require the smoothness of g(b|N ∗) on its own support [r, uN∗ ] be-

cause the distribution g(b|N,Z) can be estimated piecewise on [r, u2] , [u2, u3] , ..., [uK−1, uK ].

When the supports of g(b|N ∗) are unknown, we require the density g(b|N ∗) for each value

of N∗ to be smooth at the upper boundary.

13



As pointed out in GPV (2000), the density g(b|N ∗) may not be bounded at the reserve price

r. As they suggest, we may use the transformation
√
b− r. Notice that our identification

and estimation remain the same if b replaced by
√
b− r.

The asymptotic properties of the private values may also be derived given the direct rela-

tionship between the density g(b|N ∗) and the private values, as suggested in GPV (2000).

We also shown in the appendix that the private values converge uniformly and has a normal

distribution in the limit.

The matrix GN |N∗ , which is a by-product of the estimation procedure, can be useful for

specification testing, when N = A, the observed number of bidders. Under the assumption

that the difference between the observed number of bidders A and the number of potential

bidders N ∗ arises from a binding reserve price, and that the reserve price r is fixed across

all the auctions with the same N ∗ in the dataset, it is well-known (cf. Paarsch (1997)) that

A|N∗ ∼ Binomial(N ∗, 1 − Fv(r)) (23)

where Fv(r) denotes the CDF of bidders’ valuations, evaluated at the reserve price. This

suggests that the recovered matrix GA|N∗ can be useful in two respects. First, using Eq.

(23), the truncation probability Fv(r) could be estimated. This is useful when we use the

first-order condition (3) to recover bidders’ valuations. Alternatively, we could also test

whether the columns of GA|N∗ , which correspond to the probabilities Pr(A|N ∗) fir a fixed

N∗, are consistent with the binomial distribution in Eq. (23).

4 Monte Carlo Evidence

In this section, we present some Monte Carlo evidence for the IPV model. We consider

the case of no covariates, and estimate these bid distributions using the direct matrix

decomposition method presented in section 3 above.

We consider first price auctions where bidders’ valuations xi ∼ U [0, 1], independently across

bidders i. With a reserve price r > 0, the equilibrium bidding strategy with N ∗ bidders is:

b∗(x;N∗) =

{ (
N∗−1

N∗

)
x+ 1

N∗

(
r
x

)N∗−1
r if x ≥ r

0 if x < r.
(24)

For each auction t, we need to generate the equilibrium bids bjt, for j = 1, . . . N ∗
t , as well

as (N∗
t , Nt, Zt). In this exercise, Nt is taken to be the number of observed bidders At, and

Zt is a second corrupted measure of N ∗
t .
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For each auction t, the number of potential biddersN ∗
t is generated uniformly on {2, 3, . . . ,K},

where K is the maximum number of bidders. Subsequently, the corrupted measure Zt is

generated as:

Zt =

{
N∗

t with probability q

unif. {2, 3, . . . , J} with probability 1 − q.
(25)

For each auction t, and each participating bidder j = 1, . . . , N ∗
t , draw xj ∼ U [0, 1]. Sub-

sequently, the number of observed bidders is determined as the number of bidders whose

valuations exceed the reserve price:

At =
∑

j∈N ∗
t

1(xj ≥ r) (26)

Finally, for each auction t, and each observed bidder j ∈ At, we can calculate the equilibrium

bid using Eq. (24).

Note that the estimation procedure in section 3 above requires the matrix GA|N∗ to be

square, but in generating the variables here, the support of A is {1, 2, ..,K} while the

support of N ∗ is {2, ..,K}. To accommodate this, we define

N =

{
A if A ≥ 3

2 if A ≤ 2
.

Therefore, N has the same support as N ∗. All the identification arguments above continue

to hold.

4.1 Results

We present results from S = 200 replications of a simulation experiment. First, we consider

the case where K (the maximum number of bidders) is equal to 4. The performance of our

estimation procedure is illustrated in Figure 1. The estimator perform well for all values of

N∗ = 2, 3, 4, and for a modest-sized dataset of T = 302 auctions. Across the Monte Carlo

replications, the estimated density functions track the actual densities quite closely. In

these graphs, we also plot g(b|A = n), the bid density conditioned on the observed number

of bidders, for n = {1, 2} , 3, 4, which we consider a “näıve” estimator for g(b|N ∗ = n). For

N∗ = 2, 3, our estimator outperforms the näıve estimator, especially for the case of N ∗ = 2.

[Figure 1 about here.]
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[Figure 2 about here.]

In Figure 2, we present estimates of bidders’ valuations. In each graph, we graph the bids

against three measures of the corresponding valuation: (i) the actual valuation, computed

from Eq. (3) using the actual bid densities g(b|N ∗), and labeled “values”; (ii) the estimated

valuations using our estimates of g(b|N ∗), labeled “Pseudovalue”7; and (iii) näıve estimates

of the valuations, computed using g(b|A), the observed bid densities conditional on the

observed number of bidders.8

The graphs show that the most notable differences between the valuation estimates arise for

larger bids. This is not surprising, because as the estimated density graphs above showed,

the biggest differences in the densities were also at the upper tail. For the N ∗ = 2 case,

where the differences between the estimated and näıve valuations are most apparent, we see

that the näıve approach underestimates the valuations, which implies that bidders’ profit

margins (v − b) will also be underestimated. This makes sense, because N ∗ ≥ A, so that

the set of auctions with a given value of A actually have a true level of competition larger

than A. Hence, the näıve approach overstates the true level of competition for each value

of A (except the highest value), which leads to underestimation of the profit margin.

In a second set of experiments, we consider the case where the maximum number of bidders

is K = 6. In these experiments, we increased the number of auctions to be T = 1000.

Graphs summarizing these simulations are presented in Figure 3. Clearly, our estimator

continues to perform well. In both the K = 4 as well as the K = 6 case, we see that

the differences between our estimator and the näıve estimator diminish. This may not

be surprising, because as N ∗ increases, the bidding strategies are less distinguishable for

different values for N ∗ and, in the limit, as N ∗ → ∞, the equilibrium bid density will

approach the distribution of the valuations x. Hence, the error in using g(b|A = n) as the

estimator for g(b|N ∗ = n) for larger n will be less severe.

[Figure 3 about here.]

[Figure 4 about here.]

7In computing these valuations, the truncation probability F (r) in Eq. (3) is obtained from the first-step

estimates of the misclassification probability matrix GN|N∗ as F̂ (r) = 1 −
h

Ĝ(N∗|N∗)
i1/N∗

.
8In computing these valuations, we use the first-order condition ξ(b; A) = b + G(b|A)

(A−1)·g(b|A)
, which ignores

the possibility of a binding reserve price.
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The valuations implied by our estimates of the bid densities, for the K = 6 case, are

presented in Figure 4. Qualitatively, the results are very similar to the K = 4 results

presented earlier, with the largest differences between the valuations estimated using our

approach, and using a näıve approach coming at the upper tail of the bids.

5 Empirical illustration

In this section, we consider an application of the methodology presented above to a dataset

of low-bid construction procurement auctions held by the New Jersey Department of Trans-

portation (NJDOT) in the years 1989–1997. This dataset was previously analyzed in Hong

and Shum (2002), and a full description of it is given there.

For the purposes of applying our estimation methodology, we assume that bidders’ valu-

ations are drawn in an IPV framework. The earlier analysis in Hong and Shum (2002)

allowed for affiliated values, but assumed a parametric family (joint log-normality) for bid-

ders’ private information. Here, we estimate nonparametrically, and allow for the number

of bidders N ∗ to be unobserved by the researcher, but at the cost of the more restrictive

IPV information structure.

Among all the auctions in our dataset, we focus on two categories of construction projects,

for which the number of auctions is the largest: highway work and road grading/paving. In

Table 1, we present some summary statistics on the auctions used in the analysis. Note that

for both project categories, there are auctions with just one bidder, in which non-infinite

bids were submitted. If the observed number of bidders is equal to N ∗, the number of

potential bidders perceived by bidders when they bid, then the non-infinite bids observed in

these one-bidder auctions is difficult to explain from a competitive bidding point of view.9

However, occurrences of one-bidder auctions can be a sign that the observed number of

bidders is not indicative of the true extent of competition, and the methodology developed

in this paper allows for this possibility.

[Table 1 about here.]

For the two special variables, we used A, the number of observed bidders, in the role of the

9Indeed, Li and Zheng (2006, pg. 9) point out that even when bidders are uncertain about the number

of competitors they are facing, finite bids are difficult to explain when bidders face a non-zero probability

that they could be the only bidder.
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noisy measure N . In the role of the instrument Z, we constructed a measure of the average

number of observed bidders in the five previous auctions of the same project category which

took place before a given auction.

In order to satisfy condition 3, which requires that the matrix GN |Z be full rank, we divided

the values of A and Z into three categories: {(1, 2, 3), 4, 5+}, and correspondingly consider

only three distinct values for N ∗ ∈ {3, 4, 5}. Furthermore, the ordering assumption that we

make is that A ≤ N ∗, which is consistent with the story that bidders decide not to submit

a bid due to an (implicit) reserve price.10

Because we model these auctions in a simplified setting, we do not attempt a full analysis of

these auctions. Rather, this application also highlights some practical issues in implement-

ing the estimation methodology, which did not arise in the Monte Carlo studies. There are

two important issues. First, the assumption that A ≤ N ∗ implies that the matrix on the

right-hand side of the key equation (19) should be upper triangular, and hence that the

matrix on the left-hand side, GEb,N |ZG
−1
N |Z , which is observed from the data, should also be

upper-triangular. However, in practice, the left-hand side matrix is not upper-triangular.

We consider two remedies for this. For most of this section, we focus on results obtained by

imposing upper-triangularity on the left-hand side matrix, by setting all lower-triangular

elements of the matrix to zero.11 Later, however, we also consider results obtained without

imposing upper-triangularity, which requires an alternative ordering condition to identify

the column order of the eigenvector matrix GN |N∗ .

Second, even after imposing upper-triangularity, it is still possible that the eigenvectors and

eigenvalues could have negative elements, which is inconsistent with the interpretation of

them as densities and probabilities.12 When our estimate of the densities g(b|N ∗) took on

negative values, our remedy was to set the density equal to zero, but normalize our density

estimate so that the resulting density integrated to one.13

Results: Highway work auctions This procedure is apparent in Figure 5, which con-

tains the graphs of the estimated densities g(b|N ∗) for N∗ = 3, 4, 5, for the highway work

auctions. In each graph, we present three estimates of each g(b|N ∗): (i) the näıve estimate,

10See Hong and Shum (2002, Appendix B.1) for more discussion of a model with implicit reserve prices,

for this dataset.
11If we assume that the non-upper triangularity is just due to small sample noise, then this is a valid

procedure.
12This issue also arose in our Monte Carlo studies, but went away when we increased the sample size.
13Here we follow the recommendation of Efromovich (1999, pg. 63).
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given by g(b|A); (ii) the raw un-normalized estimate, which includes the negative values for

the density, labeled “eig est”; and (iii) the normalized estimate with the negative portions

removed, labeled “trunc est”.

[Figure 5 about here.]

Figure 5 shows that the näıve bid density estimates, using A in place of N ∗, overweights

small bids, which is reminiscent of the Monte Carlo results. As above, the reason for

this seems to be that the number of potential bidders N ∗ exceeds the observed number

of bidders A. In the IPV framework, more competition drives down bids, implying that

using A to proxy for the unobserved level of competition N ∗ may overstate the effects of

competition. Because in this empirical application we do not know and control the data-

generating process, so these economically sensible differences between the näıve estimates

(using g(b|A)) and our estimates (using g(b|N ∗)) serve as a reality check on the assumptions

underlying our estimator.

For these estimates, the estimated GA|N∗ matrix was

N∗ = 3 N∗ = 4 N∗ = 5

A = (1, 2, 3) 1.0000 0.1490 0.2138

A = 4 0 0.8510 0.4237

A ≥ 5 0 0 0.3625

Furthermore, for the normalized estimates of the bid densities with the negative portions

removed, the implied values for E[b|N ∗], the average equilibrium bids conditional on N ∗,

were 7.984, 7.694, 4.162 for, respectively, N ∗ = 3, 4, 5 (in millions of dollars).

The corresponding valuation estimates, obtained by solving Eq. (3) pointwise in b using

our bid density estimates, are graphed in Figure 6. We present the valuations estimated

using our approach, as well as a näıve approach using g(b|A) as the estimate for the bid

densities. Note that the valuation estimates become negative within a low range of bids, and

then at the upper range of bids, the valuations are decreasing in the bids, which violates a

necessary condition of equilibrium bidding. These may be due to unreliability in estimating

the bid densities g(b|A) and g(b|N ∗) close to the bounds of the observed support of bids.

Furthermore, in the estimates of g(b|N ∗), we see that the valuations rise steeply for low

bids. This arises from the truncation procedure, which leads to a kink in the bid density at

the point when the density changes from zero to a positive value.
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[Figure 6 about here.]

Comparing the estimates of valuations using g(b|N ∗), and those obtained using g(b|A), we

see that the valuations using g(b|N ∗) are smaller than those using g(b|A), for N ∗ = 3, 4 (but

virtually indistinguishable for N ∗ = 5). As in the Monte Carlo results, this implies that

the markups (b− c)/b are larger using our estimates of g(b|N ∗). The differences in implied

markups between these two approaches is economically meaningful, as illustrated in the

right-hand-side graphs in Figure (6). For example, for N ∗ = 4, at a bid of $5 million, the

corresponding markup using g(b|A = 4) is around 15%, or $750,000, but using g(b|N ∗ = 4)

is around 40%, or $2 million. This suggests that failing to account for unobservability of

N∗ can lead the researcher to understate bidders’ profit margins.

Additional Results In figures 7 and 8, we present the estimated bid densities and val-

uations, for the grading and paving contracts. Generally, the results are qualitatively the

same as in the highway work contracts discussed in detail above, but the results are not as

clean. The expected equilibrium bids, for N ∗ = 3, 4, 5 are, respectively 0.948, 1.768, and

1.361 (in millions of 1989 dollars).

As in the highway work results, we see that the näıve estimates of the bid densities, in

Figure 7, overweight the small bids relative to the estimates of g(b|N ∗). The estimated

matrix GA|N∗ for these auctions is

N∗ = 3 N∗ = 4 N∗ = 5

A = (1, 2, 3) 1.0000 0.2695 0.1202

A = 4 0 0.7305 0.1937

A ≥ 5 0 0 0.6861

[Figure 7 about here.]

[Figure 8 about here.]

Up to this point, the empirical results have imposed upper-triangularity of the matrix on

the left-hand side of Eq. (19), which is an implication of the ordering assumption that

A ≤ N∗. We next consider estimation of g(b|N ∗) without imposing upper-triangularity

of this matrix, and use the alternative ordering condition that the top row of GA|N∗ is
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decreasing from left to right; i.e.,

G(A = (1, 2, 3)|N ∗ = 3) > G(A = 4|N ∗ = 3) > G(A = 5|N ∗ = 3).

The estimates of the bid densities g(b|N ∗) under this alternative specification, for both

project categories, are shown in Figure 9. These results are not as attractive as the results

which imposed upper-triangularity. For example, note that the bid densities can be errat-

ically shaped, as in the N ∗ = 3 case for the highway work contracts. Furthermore, when

GA|N∗ is not upper-triangular, there is difficulty interpreting what it means when A ≥ N ∗

(that is, the observed number of bidders exceeds the unobserved number of potential bid-

ders).

[Figure 9 about here.]

6 Extension: Only Winning Bids are Recorded

In some first-price auction settings, only the winning bid is observed by the researcher. This

is particularly likely for the case of descending price, or Dutch auctions, which end once a

bidder signals his willingness to pay a given price. For instance, Laffont, Ossard, and Vuong

(1995) consider descending auctions for eggplants where only the winning bid is observed,

and van den Berg and van der Klaauw (2007) estimate Dutch flower auctions where only

a subset of bids close to the winning bid are observed. Within the symmetric IPV setting

considered here, Guerre, Perrigne, and Vuong (2000) and Athey and Haile (2002) argue

that observing the winning bid is sufficient to identify the distribution of bidder valuations,

provided that N ∗ is known. Our estimation methodology can be applied to this problem

even when the researcher does not know N ∗, under two scenarios.

First Scenario: Non-Binding Reserve Price In the first scenario, we assume that

there is no binding reserve price, but the researcher does not observe N ∗. (Many Dutch

auctions take place too quickly for the researcher to collect data on the number of partic-

ipants.) Because there is no binding reserve price, the winning bid is the largest out of

the N∗ bids in an auction. In this case, bidders’ valuations can be estimated in a two-step

procedure.

In the first step, we estimate gWB(·|N∗), the equilibrium density of winning bids, conditional

on N∗, using the methodology above.
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In the second step, we exploit the fact that in this scenario, the equilibrium CDF of winning

bids is related to the equilibrium CDF of the bids by the relation:

GWB(b|N∗) = G(b|N ∗)N
∗
.

This implies that the equilibrium bid CDF can be estimated as Ĝ(b|N∗) = ĜWB(b|N∗)1/N∗
,

where ĜWB(b|N∗) denotes the CDF implied by our estimates of ĝWB(b|N∗). Subsequently,

upon obtaining an estimate of Ĝ(b|N∗) and the corresponding density ĝ(b|N ∗), we can

evaluate Eq. (3) at each b to obtain the corresponding bidder valuation.

Second Scenario: Binding Reserve Price, but A Observed In the second scenario,

we assume that the reserve price binds, but that the number of bidders who are willing to

submit a bid above the reserve price are observed. The reason we require A to be observed

is that when reserve prices bind, the winning bid is not equal to bN∗:N∗
, the highest order

statistic out of N ∗ i.i.d. draws from g(b|N ∗), which is the equilibrium bid distribution

truncated to [r,+∞). Rather, for a given N ∗, it is equal to bA:A, the largest out of A i.i.d.

draws from g(b|N ∗). Hence, because the density of the winning bid depends on A, even

after conditioning on N ∗, we must use A as a conditioning covariate in our estimation.

For this scenario, we estimate g(b|N ∗) in two steps. First, treating A as a conditioning

covariate (as in Appendix A), we estimate gWB(·|A,N ∗), the conditional density of the

winning bids conditional on both the observed A and the unobserved N ∗. Second, for a

fixed N∗, we can recover the conditional CDF G(b|N ∗) via

Ĝ(b|N∗) = ĜWB(b|A,N ∗)1/A, ∀A.

(That is, for each N ∗, we can recover an estimate of G(b|N ∗) for each distinct value of A.)

In both scenarios, we need to find good candidates for the special variables N and Z. Since

typically many Dutch auctions are held in a given session, one possibility for N could be

the total number of attendees at the auction hall for a given session, while Z could be

an instrument (such as the time of day) which affects bidders’ participation for a specific

auction during the course of the day.14

14This corresponds to the scenario considered in the flower auctions in van den Berg and van der Klaauw

(2007).
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7 Conclusions

In this paper, we have explored the application of methodologies developed in the econo-

metric measurement error literature to the estimation of structural auction models, when

the number of potential bidders is not observed. The analysis is incomplete in a number of

ways. First, we have not yet provided a fuller derivation of the asymptotic theory for our

estimation procedure. Second, for the empirical application, we have not conditioned the

observed bids on covariates. Third, we will consider the usefulness of these procedures for

affiliated values auction models.

More broadly, one maintained assumption in this paper that N ∗ is observed and determin-

istic from bidders’ point of view, but not known by the researcher. The empirical literature

has also considered models where the number of bidders N ∗ is stochastic from the bidders’

perspective: e.g., Athey and Haile (2002); Hendricks, Pinkse, and Porter (2003); Bajari and

Hortacsu (2003); Li and Zheng (2006); and Song (2006). It will be interesting to explore

whether the methods used here can be useful in these models. Finally, these methodologies

developed in this paper may also be applicable to other structural models in industrial

organization, where the number of participants is not observed by the researcher. We are

considering these applications in future work.
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A Appendix: asymptotic properties of the two step estima-

tor

A.1 Uniform consistency

In the first step, we estimate ĜN |N∗ from

ĜN |N∗ := ψ
(
ĜEb,N,ZĜ

−1
N,Z

)
, (27)

where ψ (·) is an analytic function as shown in Hu (2007) and

ĜEb,N,Z =


 1

T

∑

t

1

Nj

Nj∑

i=1

bit1(Nt = Nj , Zt = Zk)




j,k

,

ĜN,Z =

[
1

T

∑

t

1(Nt = Nj, Zt = Zk)

]

j,k

.

We summarize the uniform convergence of ĜN |N∗ as follows:

Lemma 6 Suppose that V ar(b|N,Z) <∞. Then,

ĜN |N∗ −GN |N∗ = Op

(
T−1/2

)
.

Proof. It is straightforward to show that ĜEb,N,Z − GEb,N,Z = Op

(
T−1/2

)
and ĜN,Z −

GN,Z = Op

(
T−1/2

)
. As shown in Hu (2007), and the function ψ (·) is an analytic function.

Therefore, the result holds.
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In the second step, we have

ĝ(b|N ∗) := eTN∗

[
Ĝ−1

N |N∗

(
Ĝb,N,Z (b) Ĝ−1

N,Z

)
ĜN |N∗

]
eN∗ ,

where

Ĝb,N,Z (b) = [ĝb,N,Z (b,Nj , Zk)]j,k ,

ĝb,N,Z (b,Nj , Zk) =
1

Th

∑

t

1

Nj

Nj∑

i=1

K

(
b− bit
h

)
1(Nt = Nj , Zt = Zk).

Let ω := (b,N,Z). Define the norm ‖·‖∞ as

‖ĝ(·|N ∗) − g(·|N ∗)‖∞ = sup
b

∣∣ĝb|N∗ (b|N∗) − gb|N∗ (b|N∗)
∣∣ .

The uniform convergence of ĝ(·|N ∗) is established as follows:

Lemma 7 Suppose:

3.1) ω ∈ W and W is a compact set.

3.2) gb,N,Z (·, Nj , Zk) is continuously differentiable to order R with bounded derivatives on

an open set containing W.

3.3) K(u) is differentiable of order R, and the derivatives of order R are bounded. K(u) is

zero outside a bounded set.
∫∞
−∞K(u)du = 1 , and there is a positive integer m such that for

all j < m,
∫∞
−∞K(u)ujdu = 0. And the characteristic function of K is absolutely integrable.

3.4) h→ 0 and nh→ ∞, as n→ ∞.

Then, for all j,

‖ĝ(·|N ∗) − g(·|N ∗)‖∞ = Op

[(
T

lnT
h1+2R

)−1/2

+ hm

]
. (28)

The convergence properties of the kernel estimate g(b|N,Z) relies on its smoothness. This

conditional distribution is a mixture of distributions g(b|N ∗) with a different support for

a different N ∗. Therefore, the smoothness of g(b,N,Z) requires that of g(b|N ∗) on not

just its support [r, uN∗ ] but the largest support [r, uK ]. When the supports of g(b|N ∗) are

known, we only require the smoothness of g(b|N ∗) on its own support [r, uN∗ ] because the

distribution g(b|N,Z) can be estimated piecewise on [r, u2] , [u2, u3] , ..., [uK−1, uK ]. When
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the supports of g(b|N ∗) are unknown, we require the density g(b|N ∗) for each value of N ∗

to be smooth at the upper boundary.

Proof. By lemma 6, it is straightforward to show that

ĝ(b|N ∗) = eTN∗

[
G−1

N |N∗

(
Ĝb,N,Z (b)G−1

N,Z

)
GN |N∗

]
eN∗ +Op

(
T−1/2

)
.

In order to show the consistency of our estimator ĝ(b|N ∗), we need the uniform convergence

of ĝb,N,Z (·, Nj , Zk). The kernel density estimator has been studied extensively. Following

results from lemma 8.10 in Newey and McFadden (1994, handbook), we have for all j and

k

sup
b

|ĝb,N,Z (·, Nj , Zk) − gb,N,Z (·, Nj , Zk)| = Op

[(
T

lnT
h1+2R

)−1/2

+ hm

]
. (29)

The uniform convergence of ĝb|N∗ then follows.

A.2 Asymptotic Normality

Next, we show the asymptotic normality of ĝ(b|N ∗) for a given value of b. Moreover, we

define γ0 (b) = vec {Gb,N,Z (b)} , which is a column vector containing all the elements in

the matrix Gb,N,Z (b). Similarly, we define γ̂ (b) = vec
{
Ĝb,N,Z (b)

}
. Therefore, the proof of

lemma 7 suggests that

ĝ(b|N ∗) = ϕ (γ̂ (b)) +Op

(
T−1/2

)

where

ϕ (γ̂ (b)) ≡ eT
N∗

[
G−1

N |N∗

(
Ĝb,N,Z (b)G−1

N,Z

)
GN |N∗

]
eN∗ .

Notice that the function ϕ (·) is linear in each entry of the vector γ̂ (b). Therefore, we may

have

ĝ(b|N ∗) − g(b|N ∗) =

(
dϕ

dγ

)T

(γ̂ (b) − γ0 (b)) + op

(
1/
√
Th
)
,

where dϕ
dγ is nonstochastic because it is a function of GN |N∗ and GN,Z only. The asymptotic

distribution of ĝ(b|N ∗) then follows that of γ̂ (b). We summarize the results as follows:

Lemma 8 Suppose that assumptions in lemma 7 hold with R = 2 and that
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1. there exists some δ such that
∫
|K(u)|2+δ du <∞,

2. (Th)1/2 h2 → 0, as T → ∞.

Then, for a given b and N ∗,

(Th)1/2 [ĝ(b|N ∗) − g(b|N ∗)]
d→ N(0,Ω),

where

Ω =

(
dϕ

dγ

)T

V (γ̂)

(
dϕ

dγ

)
,

V (γ̂) = lim
T→∞

(Th)E
[
(γ̂ −E (γ̂)) (γ̂ −E (γ̂))T

]
.

Proof. As discussed before Lemma, the asymptotic distribution of ĝ(b|N ∗) is derived from

that of γ̂ (b). In order to proof that the asymptotic distribution of the vector γ̂ (b) is

multivariate normal N (0, V (γ̂)), we show that the scalar λT γ̂ (b) for any vector λ has a

normal distribution N
(
0, λTV (γ̂)λ

)
. For a given value of b, it is easy to follow the proof

of theorems 2.9 and 2.10 in Pagan and Ullah (1999) to show that

(Th)1/2 [λT γ̂ (b) − λTγ0 (b)
] d→ N

(
0, V ar

(
λT γ̂ (b)

))
,

where V ar
(
λT γ̂ (b)

)
= λTV (γ̂ (b))λ is the variance of the scalar λT γ̂ (b). The asymptotic

distribution of ĝ(b|N ∗) then follows.

A.3 Extension to the estimated private values

Let v denote the private value. As shown in GPV (2000), we have

ξ (b,N∗) = b+
1

N∗ − 1



∫ b
−∞ gb|N∗

(
b̃|N∗

)
db̃

gb|N∗ (b|N∗)
+

Fv (r)

1 + Fv (r)

1

gb|N∗ (b|N∗)


 .

The truncation probability Fv (r) may be recovered from g (N |N ∗) as follows:

Fv (r) = 1 − [g (N |N ∗)]1/N∗

.

A ”plug-in” estimator of ξ is

ξ̂ (b,N∗) = b+
1

N∗ − 1



∫ b
−∞ ĝb|N∗

(
b̃|N∗

)
db̃

ĝb|N∗ (b|N∗)
+

F̂v (r)

1 + F̂v (r)

1

ĝb|N∗ (b|N∗)


 .
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and

F̂v (r) = 1 − [ĝ (N |N ∗)]1/N∗

.

Notice that F̂v may converge at a
√
T -rate. The uniform consistency of ξ̂ (b,N∗) follows

from that of ĝb|N∗ . The asymptotic distribution of ξ̂ (b,N∗) may be derived in a similar way

as that of ĝ(b|N ∗). Define

ξ
(
b,N∗; gb|N∗;t

)
= b+

1

N∗ − 1



∫ b
−∞ gb|N∗;t

(
b̃|N∗

)
db̃

gb|N∗;t (b|N∗)
+

Fv (r)

1 + Fv (r)

1

gb|N∗;t (b|N∗)


 .

gb|N∗;t (b|N∗) = gb|N∗ (b|N∗) + t
(
ĝb|N∗ (b|N∗) − gb|N∗ (b|N∗)

)

We will then consider the Taylor expansion at t = 0

ξ
(
b,N∗; ĝb|N∗

)
= ξ

(
b,N∗; gb|N∗

)
+
∂ξ
(
b,N∗; gb|N∗,t

)

∂t

[
ĝb|N∗ − gb|N∗

]
∣∣∣∣∣
t=0

+
∂2ξ

(
b,N∗; gb|N∗;t

)

∂t2
[
ĝb|N∗ − gb|N∗ , ĝb|N∗ − gb|N∗

]
∣∣∣∣∣
t=τ

,

for τ ∈ [0, 1] where the first-order pathwise derivative is

∂ξ
(
b,N∗; gb|N∗,t

)

∂t

[
ĝb|N∗ − gb|N∗

]
∣∣∣∣∣
t=0

=
1

N∗ − 1

∫ b
−∞

[
ĝb|N∗

(
b̃|N∗

)
− gb|N∗

(
b̃|N∗

)]
db̃

gb|N∗ (b|N∗)

+
1

N∗ − 1



∫ b
−∞ gb|N∗

(
b̃|N∗

)
db̃

gb|N∗ (b|N∗)
+

Fv (r)

1 + Fv (r)

1

gb|N∗ (b|N∗)


 −

[
ĝb|N∗ (b|N∗) − gb|N∗ (b|N∗)

]

gb|N∗ (b|N∗)
.

Under regularity conditions, the uniform convergence of ĝb|N∗ implies that

ξ
(
b,N∗; ĝb|N∗

)
− ξ

(
b,N∗; gb|N∗

)
=
∂ξ
(
b,N∗; gb|N∗,t

)

∂t

[
ĝb|N∗ − gb|N∗

]
∣∣∣∣∣
t=0

+Op

(∥∥ĝb|N∗ − gb|N∗

∥∥2

∞

)
.

We may then show that

(Th)1/2
[
ξ̂ (b,N∗) − ξ (b,N ∗)

]
d→ N (0,Ωξ) ,

where

Ωξ = lim
T→∞

(Th) V ar

(
∂ξ
(
b,N∗; gb|N∗,t

)

∂t

[
ĝb|N∗ − gb|N∗

]
∣∣∣∣∣
t=0

)
.
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B An Alternative Approach to Estimate GN|N∗

As an alternative to step one in Section 3, we may also use a semi-nonparametric method

to estimate g(N |N ∗). This method is particularly useful when there are covariates w in the

model with unknowns g(b|N ∗, w) and g(N |N ∗, w). As suggested in Ai and Chen (2003), we

consider the following moment condition

E [b|N,Z,w] =
K∑

N∗=2

E [b|N∗, w] g(N |N ∗, w)g(N ∗|Z,w)
1

g(N |Z,w)

≡ m (N,Z,w, α0) .

where

α0 = (g10, g20, g30)

g10 = E [b|N ∗, w]

g20 = g(N |N ∗, w)

g30 = g(N∗|Z,w).

Let pi(·) be a series of known basis functions, such as power series, splines, Fourier se-

ries, etc. For example, the Hermite polynomial series {Hk : k = 1, 2, ...} is an orthonor-

mal basis of L2(R, exp{−x2}). It can be obtained by applying the Gram-Schmidt pro-

cedure to the polynomial series {xk−1 : k = 1, 2, ...} under the inner product 〈f, g〉ω =
∫
R f(x)g(x) exp{−x2}dx. That is, H1(x) = 1/

√∫
R

exp{−x2}dx = π−1/4, and for all k ≥ 2,

Hk(x) =
xk−1 −∑k−1

j=1

〈
xk−1,Hj

〉
ω
Hj(x)√∫

R
[xk−1 −∑k−1

j=1 〈xk−1,Hj〉ω Hj(x)]2 exp{−x2}dx
. (30)

We then consider the sieve expression corresponding to g10 as follows:

g1(N
∗, w) =

∞∑

i=1

K∑

j=2

βi,j × I (N∗ = j) × pi(w). (31)

In the estimation, we shall use finite-dimensional sieve spaces since they are easier to im-

plement as follows:

g1n(N∗, w) =

I1n∑

i=1

K∑

j=2

βi,j × I (N∗ = j) × pi(w). (32)
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We let I1n → ∞ as T → ∞.

The sieve expressions corresponding to g20 and g30 are as follows:

g2(N |N∗, w) =
∞∑

i=1

K∑

j=2

K∑

k=1

γi,j,k × I (N = j) × I (N ∗ = k) × pi(w),

g3(N
∗|Z,w) =

∞∑

i=1

K∑

j=2

K∑

k=1

δi,j,k × I (N∗ = j) × I (Z = k) × pi(w),

with their finite-dimensional counterparts

g2n(N |N∗, w) =

I2n∑

i=1

K∑

j=2

K∑

k=1

γi,j,k × I (N = j) × I (N ∗ = k) × pi(w),

g3n(N∗|Z,w) =

I3n∑

i=1

K∑

j=2

K∑

k=1

δi,j,k × I (N∗ = j) × I (Z = k) × pi(w).

The coefficients γi,j,k and δi,j,k satisfies

K∑

N=1

g2n(N |N∗, w) = 1 for any N ∗ and w (33)

and

K∑

N∗=2

g3n(N∗|Z,w) = 1 for any Z and w (34)

These two conditions implies linear restrictions on the coefficients γ i,j,k and δi,j,k.

We define an alternative values of α0 as follows:

α = (g1, g2, g3) .

We also define the data as Dt = (bkt, k = 1, . . . , At;At, Lt) . We then have

α0 = arg sup
α=(g1,g2,g3)

E [b−m (Dt, α)]2

The semi-nonparametric estimator α̂n = (ĝ1, ĝ2, ĝ3) for α0 is defined as:

α̂n = arg max
α=(g1n,g2n,g3n)

T∑

t=1

[bt −m (Dt, α)]2 .
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To be specific, we have

(
β̂i,j, γ̂i,j,k, δ̂i,j,k

)
= arg max

(βi,j ,γi,j,k,δi,j,k) in α=(g1n,g2n,g3n)

T∑

t=1

[bt −m (Dt, α)]2 ,

such that
(
βi,j, γi,j,k, δi,j,k

)
satisfies conditions 33,34.

Our estimate of the distribution of (N |N ∗, w) is

ĝ2(N |N∗, w) =

I2n∑

i=1

K∑

j=1

K∑

k=1

γ̂i,j,k × I (N = j) × I (N ∗ = k) × pi(w).

We may them use the procedure in Step 2 to estimation the distribution of interest g(b|N ∗, w)

as follows:

ĝ(b|N ∗, w) = eTN∗

[
Ĝ−1

N |N∗,w

(
Ĝb,N |Z,wĜ

−1
N |Z,w

)
ĜN |N∗,w

]
eN∗ ,

where Ĝb,N |Z,w and ĜN |Z,w may be constructed directly from the sample.
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Figure 1: Monte Carlo Evidence: K = 4
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Figure 2: Estimates of bid functions and implied markdowns, K = 4 experiments
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Figure 3: Monte Carlo Evidence: K = 6
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Figure 4: Estimates of bid functions, K = 6 experiments
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Figure 5: Highway work projects, impose upper-triangularity
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Figure 6: Highway work projects, pseudovalues
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Figure 7: Paving/grading projects, impose upper-triangularity
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Figure 8: Grading/paving projects, pseudovalues
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Figure 9: Estimated bid densities, without imposing upper-triangularity
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Table 1: Summary statistics of procurement auction data
Highway work Grading/paving

# bidders # aucs. Freq. avg bida # aucs. Freq. avg bida

1 6 1.42 0.575 5 3.23 0.464
2 12 2.84 5.894 9 5.81 0.737
3 31 7.33 1.692 14 9.03 0.629
4 46 10.87 1.843 23 14.84 1.086

5+ 338 77.54 7.920 104 77.10 1.248

a: in millions of 1989$
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