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• Structural models are becoming increasingly used
in industrial organization.

• These methods are useful in markets because they
allow for a logic link between game theory and

empirical practice.

• Unfortunately, they are often quite difficult to es-
timate.



• Frequently estimation of structural models requires
computation of the equilibrium within the estima-

tion procedure.

• Nonlinear optimization and difficult simulation pro-
cedures are also required.

• Numerical reliability is frequently an issue.

• Making the estimator feasible often requires the
economist to make strong parametric assumptions.



• Recently, two-step nonparametric approaches are
being increasingly applied when estimating struc-

tural models.

• Started in auctions (see Guerre, Perrign and Vuong
(2000, Econometrica)).

• In a first step, the economist estimates some part
of the policy function or constraint for an agent.

• In auctions, you nonparametrically estimate bid
distributions.

• In demand, you nonparametrically estimate a he-
donic.

• In games, you nonparametrically estimate policy
functions.



• In a second step, you apply the first order condi-
tions for optimality to find structural parameters

to rationalize the first step.

• In some cases, this may involve inequalities in-
stead of first order conditions.

• Two step estimators are much easier to compute
and require fewer parametric assumptions.

• Can be a loss of efficiency and bias due to first
step errors.



2 Example #1: Auctions.

• The first example we consider is first-price sealed-
bid auctions.

• The logic of this estimator works in far more gen-
eral auctions.

• See Pesendorfer and Jofre-Bonet (Econometrica
2003), Hortacsu (2004), Bajari and Ye (2003) and

many papers by Vuong with co-authors.



• Let v be a valuation and F be the distribution of

valuations.

• First price sealed bid auction.

• b = b(v) denote the equilibrium bid function.

• Bidder i’s profit from bidding bi is:

πi(bi; vi) ≡ (vi − bi)F (φ(bi))
N−1

• Bidder i’s expected utility is i’s surplus vi − bi,

conditional on winning, times the probability that

bidder i wins the auction, F (φ(b))N−1.



2.1 Identification and Estimation.

• Let G(b) and g(b) be the distribution and density
of the bids, respectively.

• First order conditions can be expressed as:

vi = bi +
G(bi)

g(bi)(N − 1) . (1)

• If we could estimate G and g, we could recover

vi.

• Logic is close to using an estimate of MR to re-
cover MC.



• Suppose that the econometrician observed T rep-
etitions of the auction.

• Let bi,t denote the bid that i submits in auction
t.

• Since we have multiple repetitions of the same
auction, it is possible to estimate G and g.

• Denote these estimates as Ĝ(b) and ĝ(b).



• If we substitute the estimated distributions into
equation (1), we can generate an estimate of bvi,t
of vi,t, bidder i’s valuation in the t

th auction as

follows:

bvi,t = bi,t +
bG(bi,t)bg(bi,t)(N−1)

bvi,t = bi,t +
bG(bi,t)bg(bi,t)(N − 1). (2)

• By applying equation (2) to every bid in our data
set, we can generate estimates,

nbvi,toi=t,..,N, t=1,...,T
of the valuations associated with each bid in our

data set.

• Then estimate F (v).



To summarize, the estimation procedure involves two

steps.

1. First, using non-parametric methods generate es-

timates bG and bg of G and g.

2. Given the first stage estimates, apply equation

(2) for every observed bid bi,t to generate bvi,t, an
estimate of vi,t.

For a technical discussion of this estimator, the inter-

ested reader is referred to Guerre, Perrigne and Vuong

(2000).



2.2 The Risk-Averse Model.

• CRRA utility function, U(x) = xθ. In this spec-

ification, 1 − θ is the coefficient of relative risk

aversion, with θ = 1 corresponding to risk neu-

trality.

• In this model, the first order condition is:

vi = bi + θ · G(bi)

g(bi)(N − 1). (3)

• Observe that when bidders are risk neutral, that
is θ = 1 then this is the risk neutral foc.



2.3 Structural Estimation

• The logic of the estimator is similar to the previ-
ous section.

• If the economist knew G and θ, then we could

construct a two-step estimator along the lines of

the previous section.

• The problem that we face, however, is that θ is

not directly observed.

• Let G(b;N) denote the distribution of bids with
N bidders.



• Suppose that F (v) is independent of N .

• Let vα denote the αth percentile of the distribu-
tion of valuations.

• Let bα(3) denote the αth percentile of G(b; 3) and
let bα(6) denote the αth percentile of G(b; 6).

• By equation (3) it follows that

vα = bα(3) + θ · G(bα(3); 3)
2g(bα(3); 3)

(4)

vα = bα(6) + θ · G(bα(6); 6)
5g(bα(6); 6)

(5)



• By simple algebra, it follows from the equations

(4) and (5) that:

bα(3)− bα(6) = θ ·
Ã
G(bα(6); 6)

5g(bα(6); 6)
− G(bα(3); 3)

2g(bα(3); 3)

!
(6)

• Equation (6) suggests a simple way to estimate
θ.

• If we knew the distribution of bids in the 3 and 6
bidder experiments, given α, all of the terms on

the left and right hand in this equation would be

directly observable except for θ.

• By evaluating (6) at a large number of percentiles,
we could then estimate θ using regression.



• Given an estimate bθ of θ, we can then estimate the
valuations vi by evaluating the empirical analogue

of equation (3) as in the previous section.



To summarize, we generate estimates bvi,t of vi,t as
follows:

1. Generate non-parametrically estimates bG(b;N) andbg(b;N) of g(b;N, e) and G(b;N, e).

2. Generate an estimate bθ of θ by running the follow-
ing regression, using a finite number of percentiles
α:

bbα(3)−bbα(6) = θ·
Ã bG(bbα(6); 6)
5bg(bbα(6); 6) −

bG(bbα(3); 3)
2bg(bbα(3); 3)

!
+εα

(7)

3. Given bθ, bG(b;N) and bg(b;N) use the empirical
analogue of (3) to generate an estimate bvi,t of
vi,t.

bvi,t = bi,t +
bθ · bG(bi)bg(bi)(N − 1) (8)



• Experimental first-price auctions with 3 and 6
bidders.

• Estimate valuations using nonparametric techniques
above and then ask if you got the right answer.

• Plot the estimated versus actual distribution of
valuations.

• Truth is uniform [0,30].

• Observe all bids, impliment estimator.

• Compare estimated valuations to experimental val-
uations.



Figure 2: Histograms of Estimated and Actual Valuations, Risk Neutral Model. 

 



 
 
 

Figure 3: Histograms of Estimated and Actual Valuations, Risk Aversion Model. 

    
 
 
 



3 Demand Estimation.

• The second example we consider is a nonparamet-
ric demand estimation problem.

• The demand system comes from Bajari and Benkard
(2001), but Petrin and Train (2004) use a similar

logic.

• Consider a model like BLP, only drop the para-
metric assumptions about the distribution of ran-

dom coefficients.



• In the I.O. literature, many researchers, Berry
(1994), BLP (1995), Nevo (2001), Petrin(2002)...

have studied models of the form:

uij =
X
k

βi,k log(xj,k) + ξj − αi log(yi − pj) + εij

(βi, αi) ∼ F (di; θ)

E(ξj|xj) = 0

• xj,k is a vector of characteristics for product j.

• ξj is a scalar characteristic observed to the con-

sumer, but not the economist.

• εij is a household level idiosyncratic taste shock

(e.g. logit, probit, GEV...).



• (βi, αi) are random coefficients from a parametric
distribution which depend on a vector of house-

hold level demographics di.



• The model that we will study will be of the form

uij =
X
k

βi,k log(xj,k) + αi log(ξj) + log(yi − pj)

(βi, αi) ∼ F (di)

pj = p(xj,k, ξj)

ξj ⊥ xj

• (βi, αi) ∼ F (di) will be estimated nonparametri-

cally.

• No εij (the model above will typically be just

identified)



• ξj independent from xj,k, instead of mean inde-

pendence

• We assume that a hedonic price function pj =

p(xj,k, ξj) exists.

• We estimate this function using methods based
on Matzkin (1999).



• Suppose that product characteristics are continu-
ous, then the first order conditions can be written
as:

βi,k =
xj,k

yi − pj

∂p

∂xj,k

αi =
ξj

yi − pj

∂p

∂ξj

• Given an estimate of p and ξj, we can recover
household level taste parameters.

• Next, we can estimate the following equation to
recover the joint distribution of tastes and demo-
graphics

βi,k = fk(di) + ηi
E(ηi|di) = 0



• The term fk(di) is the part of tastes that can be

explained by demographics.

• The scalar ηi is a household level taste shock.



• Our approach is computationally simple, drops
parametric assumptions and reduces the influence

of εij on estimates.

• However, not all products will be strong gross
substitutes if number of characteristics is much

smaller than number of products.

• Also, ξj is independent of xj, not just mean in-
dependent.

• Possible to characterize the joint distribution of
tastes and demographics much more generally.



4 Summary of Steps.

4.1 First Step: Estimating the Hedonic

• Fix product j∗ and suppose that locally the he-
donic satisfies:

pj = α0,j∗+α1,j∗ log(xj∗,1)+...+αK,j∗ log(xj∗,K)+ξj

• In local linear regression, you estimate a separate
set of coefficients of each xj∗

• Run weighted least squares to estimate αj∗



αj∗ = argmin
α
(p−Xα)0W(p−Xα) (9)

p =
h
pj
i
, X =

h
xj
i
,W = diag{Kh(xj − xj∗)}(10)

• This gives you a set of implicit prices for each
observed x in the sample.

• True for both discrete and continuous product
characteristics.

• The unobserved product characteristic is recov-
ered as a residual.

ξj∗ = pj∗−
³
α0,j∗ + α1,j∗ log(xj∗,1) + ...+ αK,j∗ log(xj∗,K)

´
(11)



4.2 Second Step: Applying the First Order

Conditions.

• After estimating the implicit prices, we next esti-
mate the preferences for continuous characteris-

tics.

• Suppose that utility takes the following form:

uij =
X
k

βi,k log(xj,k) + αi log(ξj) + c

• Using estimates of implicit prices obtained from
the first step and the observed choice of xj∗,k,
an estimation bβi,k of βi,k can be recovered as
follows:



bβi,k = xj∗,k
∂bpm(xj∗, ξj∗)

∂xj,k
(12)

• Apply the FOC’s for all product characteristics
and for all persons.

• This gives you an estimate of the population dis-
tribution of tastes.



4.3 Third Step: Modeling the Joint Distri-

bution of Tastes and Demographics.

• Finally, you may want to regress the taste param-
eters on demographics.

• This allows you to recover joint distribution of
tastes and demographics.

βi,k = θ0,k +
X
s
θk,sdi,s + ηi,k (13)

• We then simply estimate (13) using regression.
The regression that we run is:

bβi,k = θ0,k +
X
s
θk,sdi,s + ηi,k (14)



• In equation (14), we have simply substituted our
estimate of bβi,k from the second stage into equa-

tion (13).

• The residuals can be interpreted as household spe-
cific taste shocks.



• Handling dichotomous characteristics can be for-
mulated as estimating a probit/logit.

• See Bajari and Kahn (2004).

• If you assume the shocks are normal, then with
linear functional form for utility, buying a discrete

characteristic involves assuming that tastes are

above a threshhold.



5 Application: Demand for Personal

Computers.

• Data: PC Data Retail Hardware Monthly Report.

• Includes: quantity, average price, long list of ma-
chine characteristics for 29 months of data.

• 75% of U.S. retail computer sales.

• We examine Dec. 1999 data in the paper for

expositional simplicity.



• Final data set 695 machines, 19 characteristics
(5 operating system dummies, CPU benchmark,

MMX, RAM, hard drive capacity, CDROM, DVD,

modem, modem speed, NIC, monitory dummry,

monitor size, zip drive, desktop (versus tower),

and refurbished.

• Assume that the price function is additive in all
but 3 characteristics: CPU benchmark, RAM, hard

drive capacity.

• Estimate non-separable regression model.



• Preference log linear in continuous characteristics,
linear in discrete characteristics and price.

• Willingness to pay is not normally distributed and
independent.

• Let consumer choose from 24 largest products

(accounting for 72% of sales).

• Median elasticity of residual demand is -4 to -72
w/ median of -11.

• With all 695 product median elasticity is -100 (but
search costs may be unrealistically high to locate

all these products).



D Tables and Graphs

Table 1: Summary Statistics
Variable Mean S.D. Min Max OLS Coeff
CPU Bench 1354.5 362.3 516 2544 0.836
RAMMB 74.0 35.1 16 256 3.010
HDMB 9276.8 4850.3 2100 40000 0.008
MMX 0.64 0.48 0 1 -56.971
SCSI 0.01 0.08 0 1 310.747
CDROM 0.67 0.47 0 1 26.478
DVD 0.14 0.35 0 1 32.213
NIC 0.36 0.48 0 1 9.481
Monitor? 0.31 0.46 0 1 29.625
Mon.Size 0.75 3.27 0 15 22.822
ZIP 0.05 0.22 0 1 20.440
DT 0.17 0.37 0 1 25.611
Refurb. 0.09 0.28 0 1 -144.314
No Modem 0.55 0.50 0 1 145.169
Win NT 4.0 0.02 0.14 0 1 -106.374
Win NT 0.17 0.37 0 1 22.567
Win 98 0.58 0.49 0 1 -59.590
Win 95 0.16 0.37 0 1 -42.058
Constant (Win3.1 omitted) -590.2
R2 0.79
N 695
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Table 2: Distribution of Standard Errors for Estimates of ξ

Asymptotic Bootstrap
(1000 samples)

Quantiles:
Min 0.002 0.002

0.30 0.007 0.007
0.50 0.009 0.009
0.95 0.018 0.022
0.99 0.052 0.091

Max 0.104 0.121
Average 0.010 0.012
N 695 695

Table 3: Correlation Matrix of Taste Coefficients for a Subset of Characteristics
CPU RAM HD SCSI ξ

CPU 1.000 0.510 0.357 0.694 0.418
RAM 0.510 1.000 0.533 0.511 0.477
HDM 0.357 0.533 1.000 0.527 0.351
SCSI 0.694 0.511 0.527 1.000 0.393
ξ 0.418 0.477 0.351 0.393 1.000
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Table 4: Top Five Products in 12/99
Brand/Model CPU (Benchmark) RAM H.D. Price Sales
Hewlett Packard Pavilion 6535 Intel Celeron/466MHZ (1281) 64MB 8.4GB 590 71199
Compaq Presario 5441 AMD A6-2/475MHZ (1076) 64MB 8.0GB 540 54449
Compaq Presario 5461 AMD A6-2/500MHZ (1115) 64MB 10.0GB 727 43029
E-Machines eTower 433 Celeron/433 (1167) 32MB 4.3GB 471 40399
Hewlett Packard Pavilion 6545C Celeron/500 (1398) 64MB 13.0GB 858 34198

Table 5: Matrix of Cross Price Elasticities for Top Five Products
HP6535 Compaq5441 Compaq5461 E-Machines HP6545C

HP6535 -4.14 0.12 0.00 0.43 0.28
Compaq5441 0.17 -5.95 2.98 0.73 0.55
Compaq5461 0.00 2.80 -8.00 0.85 0.11
E-Machines 0.61 0.69 0.91 -10.65 0.66
HP6545C 0.70 0.86 0.18 1.02 -4.46
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Figure 1: Global Identification of Indifference Curves

Characteristic 1

C
haracteristic 2

p(x) MRS

Indifference Curve
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Figure 2: CPU Benchmark Willingness-To-Pay

Figure 3: RAM Willingness-To-Pay
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Figure 4: Hard Drive Willingness-To-Pay

Figure 5: SCSI Willingness-To-Pay
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Figure 6: ξ Willingness-To-Pay

Figure 7: HP6535 Demand Curve
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Figure 8: Taste for CPU Over Time
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5 Dynamic Games.

• Final example is dynamic games with discrete and/or
continuous choices.

• Examples include Aguerraguberia and Mira (2003),
Pesendorfer and Schmidt-Dengler (2003), Berry,

Ovstrovsky and Pakes (2003), and Bajari, Benkard

and Levin (2003).

• The idea behind the estimation is that in a first
step, you nonparametrically estimate agents pol-

icy functions.

• In a second step, you recover the parameters of
the period return function consistent with the ob-

served policies.



Notation.

• Assume discrete state space and discrete action
space (for convenience only).

• Agents: i = 1, ..., N

• Time: t = 1, ...,∞

• States: st ∈ S ⊂ RG, commonly known.

• Actions: ait ∈ Ai, simultaneously chosen.

• Transitions: P (st+1|at, st).

• Discount Factor: β (known to econometrician).



Objective Function: Agent maximizes EDV,

Et
∞X
t=0

βtui(at, st). (1)



Equilibrium.

• Concept: Markov Perfect Equilibrium [MPE]

• Strategies: σi : S → Ai.

• Recursive Formulation:
Vi(s|σ) = ui(σ(s), s)+β

Z
Vi(s

0|σ)dP (s0|σ(s), s)

• A MPE is given by a Markov profile, σ, such that
for all i, s, σ0i

Vi(s|σi,σ−i) ≥ Vi(s|σ0i,σ−i)



First Step.

• Estimate policy functions,
σi : S → Ai

• and state transition function,
P : S ×A→ ∆(S).

• Often will also estimate “static” parts of period
return.



Examples:

• Production functions, (Olley-Pakes)

• Investment policies, (nonparametric)

• Entry/Exit policies, (nonparametric)

• Labor Supply,

• Static supply-demand system (BLP)

• State transitions: (parametric/nonparametric).



Second Step.

• Idea: Find the set of parameters that rationalize
the data.

• I.e., conditional on P and σ, find the set of pa-

rameters that satisfy the requirements for equilib-

rium.

• Optimality Inequalities: For all i, σ0i, and initial
state, s0, it must be that

Eσi,σ−i|s0
∞X
t=0

βtui(at, st) ≥ Eσ0i,σ−i|s0
∞X
t=0

βtui(at, st),

(3)

• The system of inequalities, (3), contains all in-

formation available from the definition of equilib-

rium.



• Assume: period return function is linear in the
parameters

(stronger than needed),

ui(a, s; θ) = Φi(a, s) · θ. (4)

• Let

W (s0;σi,σ−i) = Eσi,σ−i|s0
∞X
t=0

βtΦi(at, st).

• Then the system (3) can be written as,

W (s0;σi,σ−i) · θ ≥W (s0;σ
0
i,σ−i) · θ, (5)

• for all i, σ0i, s0.



Identified Case.

• Let observed policy function be σ = (σ1, ..., σN).

• To simplify notation, abstract away from estima-

tion error (easy to fix using standard theory of

two-step estimators).

• Consider a finite set of alternative policies, σ0i that
agent i could have chosen, but did not.

• Define:

g(x, θ) =
hcW (s;σi,σ−i)− cW (s;σ0i,σ−i)

i
· θ

• Let nI be the number of alternative (but not cho-
sen) revealed preference inequalities that we con-

sider.



• Abusing notation, let g(Xk, θ) denote the func-

tion g evaluated at a particular revealed prefer-

ence inequality.

• Minimize:

Qn(θ) =
1

n

X
i

1 {g(Xk, θ) < 0} g(Xk, θ)
2

Comments:

• Two-step estimator is constructed by evaluating
Qn usiing first stage policy function estimates.

• Variances in denominator are known because they
can be estimated very precisely using the simula-

tion draws.



• Computationally light because simulation only needs
to be done once, prior to maximizing likelihood.

• All second stage error comes from simulation.



Application to Dynamic Discrete
Choice.

• Agent chooses single action, a, out of finite set,
A.

• States include variables, s, observed by econo-
metrician, and unobserved states, �, representing

stochastic shocks to preferences.

• Period utility received from choice j is,

uij = u(aj, s; θ) + �(aj)

• � is iid over time and individuals, and N(0, V�).



First Stage.

• Policy function is,
P (aj|s) = Pr(v(aj, s)+ε(aj) ≥ v(ak, s)+ε(ak), for all k)

(10)

• where v(aj, s) satisfies
v(aj, s) = u(aj, s)+

β
Z Z

max
j0

h
v(aj0, s

0) + ε(aj0)
i
P (dεj0)P (ds

0|s, a = aj).

(11)

• The policy function can be estimated by running a
probit on a flexible function, f (M)(a, s; θ). This

also provides an estimate of V�. The estimated

policy function is,

σi(s, ε(a)) = aj, ifbf (M)(aj, s) + ε(aj) ≥ bf (M)(ak, s) + ε(ak) for all k.



• Alternative policies are represented by alternative
functions, bf (M), e.g.,

bf (M) + µ(aj, s),

• where in the estimation µ(aj, s) is iid from some

distribution.

• Period Return Function:
uij(aj, s; θ) = Φ(aj, s) · θ + ε(aj).

• Optimality Inequalities.

• For all s, σ0ibEσi,s ∞X
t=0

βtΦ(aj, s)− bEσ0i,s
∞X
t=0

βtΦ(aj, s)

·θ+bEσi,s ∞X
t=0

βtε(at)− bEσ0i,s
∞X
t=0

βtε(at)

 ≥ 0 (2)



Sampling Inequalities:

• Randomly draw nI starting states, s0 from S.

• Randomly draw nI alternative policies, σ
0
i.

• Simulate paths of states by drawing unobserved
states and executing policy functions. Use these

simulated paths to simulate terms in brackets for

each of the nI inequalities sampled.



Simple Example, a la Rust ’87

• State is age: at ∈ {1, 2, 3, 4, 5}

• Control is “replacement”: it ∈ {0, 1}

• Machines start out at age 1. If machine is re-

placed, then it goes back to being age 1. If not,

then it ages by one year (at age 5 it stays 5).

• Period payoff function is,

u(it, at) =

(
−θat + �0 if it = 0
−R+ �1 if it = 1

where �0 and �1 are logit errors and θ and R are

parameters.

• True Values: θ = 1, R = 4.



A Tables and Figures

Table 1: DDC Monte Carlo, 500 Monte Carlo runs, 25 subsamples of size n/2
Mean SE(Real) 5%(Real) 95%(Real) SE(Subsampling)

n = 400, nI = 200, ns = 1000
θ 1.00 0.14 0.79 1.24 0.10
R 4.02 0.53 3.24 4.96 0.39
n = 200, nI = 200, ns = 500
θ 0.99 0.18 0.72 1.37 0.17
R 4.00 0.78 2.94 5.95 0.86
n = 100, nI = 200, ns = 250
θ 0.94 0.32 0.47 1.48 0.35
R 3.75 1.26 1.92 5.70 1.15
n = 50, nI = 200, ns = 150
θ 0.89 0.54 0.11 2.03 0.47
R 3.57 2.35 0.60 8.16 2.27
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Dynamic Oligopoly w/ Investment
• Like Pakes and McGuire or Ericson and Pakes.

• Period return function
πi(s, a, I) = π̃i(s, a)− C(Ii) (13)

• s - vector of states, (some may be unobserved).

• a - actions that do not influence state transitions.

• I - actions that do influence state transitions.

• C(I) - cost of investment function.

• Ψ - scrap value of firm.

• F (xe) - distribution of privately known entry cost.



(iii) • s is capital, and an unobserved productivity

shock.

• a is quantity.

• I is investment that increases capital.



First Stage.

• Estimate π̃i(s, a) and ai(s) using standard tech-

niques.

(BLP/Olley and Pakes/etc.)

• Estimate P (s0|s, I)
(parametric or nonparametric — depends on model).

• Estimate investment function (Ii(s)), exit func-
tion (χ(s)), and entry probabilities (χe(s)).

(typically nonparametric)

• Unobserved states must be recovered in first stage.



Second Stage.

• Assume that cost of investment function is linear
in parameters:

C(I) = c · Φ(I).

• For every initial state, s0, and every alternative
investment policy, σ0(s) = (I 0(s), χ0(s)),

·bEσi,σ−iP∞t=0 βtπ̃i(at, st)− bEσ0i,σ−iP∞t=0 βtπ̃i(at, st)
¸

+c ·
·bEσi,σ−iP∞t=0 βtΦ(Iit)− bEσ0i,σ−iP∞t=0 βtΦ(Iit)

¸

+Ψ

 bEσi,σ−iP∞t=0 βt{χ(st) = 1}
−bEσ0i,σ−iP∞t=0 βt{χ0(st) = 1}

 > 0



• Extremum estimator to estimate c and Ψ.

• Also straightforward to estimate sunk cost of en-
try distribution (parametrically or nonparametri-

cally) — see paper for details.



Table 2: Dynamic Oligopoly Monte Carlo Parameters
Parameter Value Parameter Value
Demand: Investment Cost:
α 1.5 c1 1
γ 0.1
M 5 Marginal Cost:
y 6 mc 3

Investment Evolution Entry Cost Distribution
δ 0.7 xl 7
a 1.25 xh 11

Discount Factor Scrap Value:
β 0.925 Ψ 6

Table 3: ns = 2000, 400 Monte Carlo runs, 20 subsamples of size n/2

Mean SE(Real) 5%(Real) 95%(Real) SE(Subsampling)
n = 400, nI = 500
c1 1.01 0.05 0.91 1.10 0.03
Ψ 5.38 0.43 4.70 6.06 0.39
n = 200, nI = 500
c1 1.01 0.08 0.89 1.14 0.05
Ψ 5.32 0.56 4.45 6.33 0.53
n = 100, nI = 300
c1 1.01 0.10 0.84 1.17 0.06
Ψ 5.30 0.72 4.15 6.48 0.72
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Figure 1: Entry Cost Distribution for n = 400
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Figure 2: Entry Cost Distribution for n = 200
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Figure 3: Entry Cost Distribution for n = 100
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