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Abstract

This paper describes and implements a simple and relatively conser-
vative approach to the most common problem in applied microecono-
metrics: estimating a linear causal effect when the explanatory variable
of interest might be correlated with relevant unobserved variables. The
main idea is to use the sample correlation between the variable of inter-
est and observed control variables to suggest a range of reasonable values
for the correlation between the variable of interest and relevant unob-
served variables. It is then possible to construct a range of parameter
estimates consistent with that range of correlation values. In addition
to establishing the estimation method and its properties, the paper
demonstrates two applications. The first uses data from the Project
STAR class size experiment, and demonstrates application to experi-
ments with imperfect randomization. In this application, I find that the
correlation between treatment and unobserved outcome-relevant factors
would need to be 300% to 1000% as large as the correlation between
treatment and observed outcome-relevant factors in order to eliminate
or reverse the sign of the effect from that estimated by OLS. The second
application uses CPS to study the relationship between state-level in-
come inequality and self-reported health, and demonstrates application
of the method to observational data when there is uncorrectible endo-
geneity of the variable of interest. In this application, I find that the
estimated effect reverses sign if the correlation between inequality and
health-relevant unobservables is at least 23% as large as the correlation
between inequality and health-relevant observables.

*Preliminary research, comments are appreciated. An earlier version of this paper was
presented at the 2006 Joint Statistical Meetings under the title “Forming better guesses
about neighborhood effects on health: Estimating community effects using conditional
modeling of unobservables.” Author contact information: email bkrauth@sfu.ca, web
http://www.sfu.ca/ bkrauth/



1 Introduction

This paper describes a simple approach to the most common problem in
applied microeconometrics: estimating a linear causal effect when the
policy variable of interest might be correlated with relevant unobserved
variables. The microeconometrician’s standard methods - natural ex-
periments, instrumental variables, fixed effects, and simply adding con-
trol variables - are all designed to solve this problem. However, there are
numerous applications where the standard solutions are inapplicable,
but the policy question needs the best answer available. Convention-
ally, researchers in this situation make the weakest set of assumptions
needed to achieve point identification of the causal effect, and hope
that those assumptions are close enough to the truth. An alternative
approach to this problem, argued most forcefully by Manski (1994), re-
jects overemphasis on point identification at the cost of the credibility
of the identifying assumptions. Instead point identification is viewed as
a special case of set or interval identification, and there is an explicit
trade-off between the strength of the researcher’s assumptions and the
size of the identified set. Stronger assumptions narrow the range of the
identified set, eventually to a single point. This set identification ap-
proach to identification questions in econometrics is closely related to
the long-standing literature in statistics on sensitivity analysis. In clas-
sical sensitivity analysis, the strength of assumptions is parameterized
by a single sensitivity parameter whose value is zero in the standard
case. Interval restrictions on the sensitivity parameter lead to interval
identification of the parameter of interest, with a direct and positive
relationship in size between the two intervals.

The approach developed in this paper is in this spirit. A very sim-
ple linear model is parameterized with a single policy variable and a
set of observed control variables. The outcome is linear in the policy
variable, but is also affected by other factors that may be correlated
with the policy variable. The sensitivity parameter describes the corre-
lation between the policy variable and these unobservable other factors
relative to the correlation between the policy variable and the control
variables. This type of sensitivity parameter has been used recently in
some specific applications using nonlinear econometric models (Altonji,
Elder and Taber 2005, Imbens 2003, Krauth 2006), but not in the sim-
ple linear context. After developing the model and estimation method,
I derive some of its statistical properties, and report the results from
two applications.

The first application is to data from a natural or designed experi-
ment in which there are small deviations from true random assignment.
The example dataset used is from Project STAR, a well-known exper-
imental study of the effect of smaller class size on student outcomes.
Researchers anlyzing data from imperfect experiments will often show
extensive tables of summary statistics for the particiant’s background
variables broken down into treatment and control groups. If the two
groups are sufficiently similar in these background variables, the re-
searcher might then argue that they are likely to be similar in outcome-
relevant unobserved variables, and thus we can treat the experiment



as following true random assignment. Researchers will also sometimes
add these variables as control variables in the regression estimating the
treatment effect.

The second application is to provide a more conservative approach
to non-experimental data in which a researcher cannot credibly claim
exogeneity of the policy variable, and in which standard techniques for
solving the endogeneity problem are inapplicable. The policy question
in this application is the effect of income inequality on individual health.
Public health researchers have investigated this question extensively,
and have generally found a negative relationship between state-level in-
equality and health, even after controlling for individual income. These
findings have been criticized by economists and other researchers in
public health on various methodological grounds, but economists have
yet to make much ground on producing more convincing answers to
the question. As will be discussed, most of the standard techniques
used in applied microeconometrics to solve endogeneity problems are
inappropriate in this particular case.

The paper is organized as follows. Sectiondescribes the model and
derives the estimator and its statistical properties. Section [3| describes
the application to the Project STAR study of the effect of class size on
academic outcomes. Section[d]describes the application using CPS data
to study the effect of income inequality on health. Section |[5| concludes
and notes avenues for further research.

2 Methodology
2.1 Model

The model is as follows. Let y be a scalar random variable representing
the outcome of interest, and let z be a scalar random variable represent-
ing the policy or treatment of interest. The structural model is linear
in z.
y=0z+u (1)

where the parameter 6§ measures the true effect of changes in z on y,
and the scalar random variable u represents the effect of all variables
other than z. In general, E(ulz) # 0.

Now, let X be a k-vector of control variables (including an intercept)
such that F(X'X) is positive definite. Define:

I&i E(X'X) 'E(Xu) (2)
v = u—Xp

That is, X is the best linear predictor of u given X. By construction,
y=0z+X0G+wv
and
E(X'v)=0
Note that ( is not assumed to have a structural or causal interpretation,

and is not of direct interest. In addition, we have not imposed any
assumption of linearity in the relationship between y and X.



In order for the OLS regression of y on (X, z) to consistently estimate
the true effect 6, we would need E(zv) = 0 or equivalently, corr(z,v) =
0. Instead we suppose that:

corr(z,v) = Acorr(z, X 3) 3)
for some A € R. In order to for the correlations in (3)) to exist, we need:

var(z) > 0
var(v) > 0
var(XB) > 0

The first condition simply says that the variable of intrest has variation
in the population, and can be verified directly from the data. The
second condition also can be verified in the data, as its violation implies
that y can be written as an exact linear combination of z and X. The
third condition is somewhat more difficult to verify, but it holds as long
as at ( has at least one nonzero element other than the intercept.

The sensitivity parameter A represents the correlation between our
policy variable and unobservable factors, relative to the correlation be-
tween the policy variable and observable factors. The only restriction on
the data generating process imposed directly in equation is finiteness
of A, i.e. if corr(z, X3) = 0 then corr(z,v) = 0.

Without further restrictions on A, 6 is not identified. Alternatively,
if we assume A = 0, then OLS will consistently estimate 8. However,
this assumption is often difficult to justify in applied work using ob-
servational data. This paper considers weaker assumptions of the form
A € A, where A is some interval. Under this category of assumptions, we
can place consistent bounds on . The informativeness of those bounds
will depend on the choice of A.

2.2 Identification

First we define what can be identified from the joint distribution of
(y, 2, X). Identification is based on the k + 1 equations:
E(X'(y—-60z—XpB)) = 0 (4)
corr(z, (y — 0z — X)) — Acorr(z, XB) =

and on the restriction that
A €A= [, \a] (5)

for some interval A. The first k equations in are linear in all pa-
rameters, while the last equation is linear in A but nonlinear in # and
s.

Define the function A : R — R such that:
corr(z,y — 0z — P(y — 0z|X))

A0) = corr(z, P(y — 0z|X))

where P(.|X) is used to denote the best linear predictor of a random
variable given X. Proposition [1| below outlines some key properties of

AQ).



Proposition 1 (Properties of \(.)) Let:

. [
A:E_l

where R2, is the R® from the best linear predictor of z given X. and

let:
gr _ ooz, Py|X)
~ cov(z, P(2]X))
where P(.|X) is the best linear predictor of its argument given X. Then:

1. X(.) has the property that:

lim A(0) = lim A(0) = \*

60— o0 60— —oo

2. \(0) exists and is differentiable for all 6 # 6.
3. A(.) has the property that:

li =
Jm [A(B)] = oo

for almost all joint distributions of (X,y, z).

Proof: See appendix.
Next, define the set function:

_ | {0:X0) e AYuo* if corr(z, (y—0"z— XB3)) =0
o) :{ {6:A(8) € A} oot

The set ©(A) is the set of values for 6 that are consistent with the joint
distribution of (y,z,z) and the restriction that A € A. In many cases
we will be interested primarily in the range of ©(A), so let:

OL(A) = infO(A)
Ou(A) = supO(A)

For a given A, 01,(A) and 05 (A) are numbers rather than sets.
Proposition [2| describes some of the properties of the identified set
O(A).

Proposition 2 (Properties of O(.)) The set O(A) is bounded if and
only if \* ¢ A.

Proof: See appendix.

To understand the intuition for Proposition [2] note that R2, is the
R? from the OLS regression of z on X. When R?, = 1, i.e., z is an
exact linear function of X, we have \* = 0 and the model is unidentified
even under exogeneity. This is of course the standard rank condition for
OLS regression. As R2, — 0, the value of X at which 6 is unidentified
increases.

Propositions[T]and [2]lead to the main identification result in Propo-
sition [3]



Proposition 3 (Identification) Let (M\o,00) be the true values of A
and 0. Then 0o is identified from the joint probability distribution of
(X,y, z) in the sense that:

M) = X if6o 0"
MMEA = 60N

Proof: See appendix.

2.3 Estimation

Estimation proceeds in two steps. First, we calculate the sample analog
to A(6) over a fine grid of values for 0:

A) = corr(z,y — Gf; — P(y — 62| X))
corr(z, P(y — 02| X))

where cdrr is the sample correlation function, and P(y — 0z|X) is the
vector of fitted values from the OLS regression of y — 0z on X.
Then we calculate the sample analog to ©(A). First, let:

o _ cov(z, P(y|X))

0" = -
cov(z, P(z]| X))
and let:
= Al -1
RZ,
Then let:
O(A) = {6: {\(9) e AYUO” %f |corr (z, (y — 0"z — Xﬁ)) | < en
{6: A(0) € A} if not
where exy > 0 is a small number, and let:
O.(A) = infO(A)
Ou(A) = supO(A)

Proposition 4 (Consistency of j\g) and Q()) Let {xi,yi, 2}y be
a random sample of size N, and let \(6) and ©(A) be defined over that
sample Then:

plim A(fo) = A(6o) if 0o # 0"

N—oo

plim o) = 0.()  F Lo ) #0
J;V)lim 0u(A) = 0u(A)  if B eg, ) #£0

Proof (incomplete): See appendix.



2.4 Inference

For most parameter values, the lower and upper bounds of é)(A) can
be written as continuous but nonlinear functions of a set of sample mo-
ments. As a result, these bounds are v/ N-consistent and asymptotically
normal, and an asymptotic covariance matrix can be derived through
straightforward application of the delta method. Proposition |5| below
states this more explicitly.

Proposition 5 (Asymptotic distribution of ©(A)) Suppose that 0y #
0 , N ¢ A, DO ) #0, and B,y (ay #0. Then:

O.(A) —0L(A) | b ol oLm
\/N{ Orr(A) — 0 (A) } _>N<O’[ oL Ok D

where the asymptotic covariance matrix can be derived using the delta
method.

Proof (incomplete): See appendix.

Proposition [5| can be used to perform simple asymptotic hypothesis
tests on fp. In constructing confidence intervals, Imbens and Manski
(2004) note the necessity of distinguishing between a confidence interval
for the identified set ©(A) and for the true parameter value 6y. A con-
fidence interval for the identified set can be constructed using the lower
and upper bounds, respectively, of the ordinary confidence intervals of
6 (A) and 0 (A). The confidence interval for the true parameter value
is generally narrower than that for the identified set, and its construc-
tion is described in Imbens and Manski.

3 Application #1: Experiments with in-
complete randomization

Next, we consider two applications. The applications have been cho-
sen to illustrate the two primary uses of the methodology: analysis of
experiments with incomplete randomization, and somewhat more con-
servative than usual analysis of observational data with potential endo-
geneity that cannot be corrected through use of instrumental variables
or fixed effects. They have also been chosen with an eye towards applied
questions that have been extensively researched with well-known data
sources.

3.1 Background: Project STAR and the effect
of smaller classes on student achievement

The effect of class size on student achievement has been extensively
studied in the economics of education literature. Class size reductions
are a commonly proposed and implemented policy aimed at improv-
ing student outcomes, and are one of the most costly. Despite this, a
number of researchers (Hanushek 1986, for example) have found that



class size does not have an important effect on student outcomes. How-
ever, many of these studies are based on observational data and are
thus plagued by endogeneity issues. Project STAR (Student/Teacher
Achievement Ratio) is a well-known experimental study implemented
in Tennessee in the late 1980’s, aiming to measure the effect of class
size on academic outcomes.

The design of Project STAR is as follows. A total of 79 schools
were selected by the researchers for participation, based on willingness
to participate and various criteria for the suitability of the school for
the study. Within each school, students entering kindergarten in 1985
were randomly assigned to one of three experimental groups: the small
class (S) group, the regular class (R) group, and the regular class with
full-time teacher aide (RA) group. Each school had at least one class of
each type. Students in group S were organized into classes with 13 to
17 students, while students in the R and RA groups were organized into
classes with 22-25 students. Teachers were also randomly assigned. The
experiment continued through grade 3, with students in group S kept
in small classes through grade 3, etc. Students were given achievement
tests in each year of the experiment, and have been subject to several
follow-up data collections through their high school years.

The Project STAR research team has published numerous papers
in education journals over the years describing their findings that small
classes are associated with better outcomes along several dimensions.
These findings received more attention among economists beginning
with the work of Krueger (1999). The primary contribution of that
article over previous work in the education literature is the extensive
investigation of the consequences of difficult-to-avoid deviations from
the experimental design. In particular:

1. Between grades, some students were moved between the small and
regular class groups as a result of behavioral issues and/or possibly
pressure by parents.

2. New students entered Project STAR schools during the exper-
iment, and were randomly assigned to one of the experimental
groups.

3. Some students moved out of their original schools. Krueger notes
that there is some evidence that students in the small class treat-
ment are less likely to change schools.

Krueger’s approach to the problem of imperfect randomization is quite
common in the analysis of data from field experiments, and follows two
steps. First, he investigates whether the deviations from randomiza-
tion produce statistically significant differences in observed background
variables between the experimental groups. Krueger finds that there
are not large differences, though they are occasionally statistically sig-
nificant. Second, instead of simply comparing means across treatment
and control groups (with adjustment for school-level fixed effects), he
also estimates regression models that include these observed background
variables as controls. Krueger finds that including these variables does
not substantially change the estimated treatment effect.



This two-step procedure is common enough in the econometric anal-
ysis of experiments that it bears some exploration. First, note that one
of the two steps is redundant. If there are no differences in the distri-
bution of observed characteristics between the treatment and control
groups, controlling for those characteristics necessarily has no effect on
the estimated treatment effect (save for any new bias introduced by
misspecification of functional form). If there are differences in the dis-
tribution of observed characteristics, then this is easily addressed by
simply controlling for them in a standard regression framework. Devi-
ations from random assignment create problems identifying the treat-
ment effect when they lead to differences in the distribution of relevant
unobserved characteristics, and not when they lead to differences in ob-
served characteristics. Second, note that the supposed null hypothesis
- a perfectly implemented experimental assignment - is surely false in
this case, as the project team has records of specific deviations from
the experimental protocol. Failure to reject this null is in some sense
simply a matter of insufficient sample size.

So why is this procedure followed? One possible explanaton is that
the researchers are implicitly following a model in which the distribu-
tion of observed characteristics between treatment and control groups
provides information on the distribution of relevant unobserved charac-
teristics between the groups. Specifically, if the difference in observed
characteristics is shown to be small, then the researcher is safe assuming
the difference in unobserved characteristics is also small enough to be
ignored. In the first part of the procedure, in which individual charac-
teristics are compared one-by-one across the groups, each characteristic
is essentially given equal importance. In the second part of the pro-
cedure, in which the characteristics are used as control variables in a
linear regression, characteristics are given importance based on their
association with the outcome.

This implicit and informal argument is at least somewhat plausible.
However, as applied in practice it has some weaknesses that the cur-
rent paper addresses. First, the argument is made explicit rather than
implicit, and so can be discussed in context. Second, the conventional
procedure is too binary: if one can show that the assignment looks
mostly random on the basis of observables, one can credibly assume
randomness of unobservables report the point estimate from OLS as a
consistent estimate of the true effect. However, there are experiments
in which observables are somewhat associated with the treatment, and
researchers are faced in this situation with the option of either assuming
randomness of unobservables or giving up on measuring the treatment
effect. The alternative suggested in the current paper is to parameter-
ize the amount of selection on unobservables relative to the measured
selection on observables.

3.2 Data and methodology

The analysis in this paper is based on the longitudinal records from
kindergarten through high school of the 11,601 students that partici-
pated in the experiment (Finn, Boyd-Zaharias, Fish and Gerber 2007).



Table [I| reports summary statistics and is a partial reconstruction of
the table in the appendix of Krueger (1999). Most table entries are
self-explanatory, with the exception of the test score variables. Here I
followed the procedure described by Krueger: raw scores on each of the
individual subject tests in a given year are converted into percentiles
based on the distribution of scores among students in the control group.
Each student’s percentile scores are then averaged across subjects. The
resulting score thus has a potential range of zero to 100, has a mean and
median close to 50, and can be roughly though not exactly interpreted
in percentile units.

Grade

Variable K 1 2 3
Class size 20.3 21.0 21.1 21.3
(4.0) (4.0) (4.1) (4.4)
Percentile score avg. SAT 51.4 51.8 51.3 51.3
(26.6) (26.9) (26.5) (27.0)
Free lunch 0.48 0.52 0.51 0.51
White 0.67 0.67 0.65 0.66
Girl 0.49 0.48 0.48 0.48
Age on September 1st 5.43 6.57 7.66 8.70
(0.35) (0.49) (0.56) (0.59)

Exited sample 0.29 0.26 0.21
% of teachers with MA+ degree 0.35 0.35 0.37 0.44
% of teachers who are White 0.84 0.83 0.80 0.79
% of teachers who are male 0.00 0.00 0.01 0.03
# schools 79 76 75 75
# students 6325 6829 6840 6802
# small classes 127 124 133 140
# regular classes 99 115 100 90
# reg./aide classes 99 100 107 107

Table 1: Summary statistics, Project STAR data.

For his benchmark regression results, Krueger estimates a regression
with school-level fixed effects:

y=0z+XB8+S+v (6)

where y is the test score outcome, z is an indicator of the class-size treat-
ment, X is a vector of covariates, and S is an unobserved school-level
fixed effect. The school-level fixed effect is necessary in this case because
students were randomly assigned within schools, but assignment prob-
abilities differed across schools. The school effects can be incorporated
into our framework by applying the standard within transformation
and making a small modification to our assumption. First, subtract
school-level averages from both sides of the equation:

y—0s =0(z— Z) + (X = Xs)B+ (v — 0s) (7)
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Then assume that:
corr (2,0) = Acorr (2, Xﬁ) (8)

where 2 = (2 — %), o = (v — 0,), and X = (X — X,). We can then
apply the methods described in Section [2]

3.3 Results

Table [2| shows OLS regression results, and is a partial reconstructiorﬂ
of Table 5 in Krueger (1999). For each grade, two specifications are
reported. Specification (1) corresponds to specification (4) in Krueger’s
Table 5, while specification (2) omits the regular/aide class indicator
but is otherwise identical to specification (1). This is done because the
approach described in this paper is designed to evaluate a single pol-
icy variable. As the results show, the regular-aide treatment is nearly
irrelevant to student outcomes, and so can be omitted as an explana-
tory variable. This result corresponds to the findings of both Krueger
and the original Project STAR research team. The results in Table [2]
suggest that the small-class treatment increases test scores by about
5-7 percentile points. Note that the gap between the small and regular
class groups does not generally increase over years. There

Next, we apply the methodology described in Section The out-
come variable y is the average percentile SAT score, the policy variable
z is the small class treatment, and the set of control variables X are
those teacher and student background variables included in specifica-
tion (2) of Table [2] Table [3| reports the resulting interval estimate of
the treatment effect 6 for various choices of A.

For the kindergarten data, Table [3| indicates that the estimated ef-
fect of small classes remains similar in magnitude even if the correlation
between the treatment and unobservables is ten times as large as the cor-
relation between the treatment and observables. For the other grades,
the results remain strong but somewhat less so. For the grade 1 data,
the range of treatment effects consistent with the data is strictly posi-
tive as long as the correlation between treatment and unobservables is
somewhat less than three times as large as the correlation between the
treatment and unobservables. For the grade 2 and 3 data, the range
of estimated treatment effects is positive for a relative correlation of
slightly more than three, but not for a relative correlation of 3.5 or
above.

The results reported in Table [3| can also be presented graphically,
and this mode of presentation provides a bit more insight into where
the results are coming from. Figure [1| shows the results graphically for
kindergarten and grade 1, while Figureshows results for grades 2 and
3. In each graph, the solid line is the estimated A(#) function. The
dashed vertical line is the estimated A*. The shaded region shows the
range of ©([0, A]) for each positive value of A. The dot shows the OLS
point estimate of the effect.

1The standard errors reported in Table [2| are not yet corrected for classroom-level clus-
tering, as are the standard errors in Krueger’s Table 5. Applying the correction would raise
most standard errors by a factor of about 1.5 to 2.0.
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Explanatory
Variable OO RC) N ¢ RN ) N ¢ N ¢ N ¢ R )
Small class 5.33 5.20 7.55 6.72 5.76 4.97 5.01 5.30
(0.74) (0.64) (0.71) (0.63) (0.75) (0.65) (0.81) (0.68)
Regular/aide class 0.26 1.77 1.54 -0.51
(0.71) (0.69) (0.72) (0.78)
White/Asian 8.39 8.39 6.94 6.98 6.45 6.48 6.05 6.05
(1.24) (1.24) (1.09) (1.09) (1.16) (1.16) (1.26) (1.26)
Girl 4.38 4.38 3.83 3.82 3.42 3.41 4.19 4.20
(0.59) (0.59) (0.56) (0.56) (0.59) (0.59) (0.62) (0.62)
Free lunch -13.08 -13.08 -13.55 -13.55 -13.62 -13.64 -12.95 -12.94
(0.71) (0.71) (0.68) (0.68) (0.71) (0.71) (0.74) (0.74)
White teacher -1.13 -1.09 -4.02 -4.23 0.43 0.61 0.28 0.27
(1.18) (1.17) (1.02) (1.01) (0.93) (0.92) (1.06) (1.06)
Teacher experience 0.26 0.27 0.06 0.07 0.10 0.11 0.05 0.05
(0.06) (0.06) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Master’s degree -0.59  -0.60 0.44 0.55 -1.06 -0.92 0.93 0.89
(0.77) (0.77) (0.70) (0.70) (0.72) (0.72) (0.76) (0.76)
School fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Table 2: OLS estimates of effect of class sizes on average percentile rank on
Stanford Achievement Test.
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©(A) by grade

A K 1 2 3
{0.00} 5.20 6.72 4.97 5.30
(0.00,0.25]  [5.18,5.20]  [6.17,6.72] [4.61,4.97] [5.01,5.30]
(0.00,0.50]  [5.16,5.20]  [5.60,6.72] 4.25,4.97] [4.72,5.30]
(0.00,0.75]  [5.15,5.20]  [5.05,6.72] 3.90,4.97] [4.40,5.30]
(0.00,1.00]  [5.13,5.20]  [4.49,6.72] 3.54,4.97] [4.07,5.30]
(0.00,2.00]  [5.06,5.20]  [2.21,6.72] 2.08,4.97] [2.51,5.30]
(0.00,3.00]  [4.99,5.20] [-0.15,6.72]  [0.56,4.97] [0.43,5.30]
(0.00,4.00]  [4.91,5.20] [-2.63,6.72]  [—1.00,4.97] [—2.47,5.30]
(0.00,5.00]  [4.83,5.20] [-5.21,6.72]  [-2.62,4.97] [—6.87,5.30]
(0.00,7.50]  [4.61,5.20] [—12.44,6.72] [-7.01,4.97]  (—o0,00)
(0.00,10.00]  [4.36,5.20] [—21.60,6.72] [—12.05,4.97]  (—o0,0)
[0.00,15.00] (—o00,00) (—00, 00) (—00, 00) (—00,0)
[0.00, 00) (—00,00) (—00,00) (—00,00) (—00,00)
(—00,0.00]  [5.20,8.17] [6.72,134.57)  [4.97,96.33]  [5.30,15.12]
A 12.31 13.85 14.88 5.79

0 8.17 134.57 96.33 15.12
A(0) 28.94 2.94 3.37 3.18

Table 3: Interval estimates of the treatment effect of small class sizes on
average percentile SAT score, given interval restrictions on relative correlation
of treatment with unobservables.
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Figure 1: Estimated treatment effect of small class size (6) on average per-

centile SAT exam scores for various restrictions on relative selection on unob-
servables (A).
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To summarize these results, accounting for deviations from random
assignment in Project STAR would overturn the primary results only if
these deviations affected the distribution of outcome-relevant unobserv-
ables across the treatment and control groups much more (by a factor of
more than 10 for the kindergarten data, and by a factor of about 3 for
the other grades) than it affected the distribution of outcome-relevant
observables.

4 Application #2: Observational data
with “uncorrectable” unobserved hetero-
geneity

The second type of application of this approach is to situations where
the relevant data comes from an observational rather than experimental
setting, and there are no apparent solutions to the endogeneity problem.
In this case, a researcher faces the choice between providing no estimates
of the effect of interest at all, or providing OLS estimates and hoping
for the best.

4.1 Background: Income inequality and health

An extensive literature in public health considers the question of whether
a higher level of income inequality has a substantial negative impact on
individual health outcomes in industrialized countries. The best known
proponent of the “inequality hypothesis” is the British epidemiologist
Richard G. Wilkinson (1996), who has identified several mechanisms by
which inequality may have a negative effect on health. The first and
most obvious mechanism is through health expenditures: if health is
a normal good and health expenditures have a positive but declining
marginal product in health outcomes, then a mean-preserving spread in
income within a society will tend to reduce the average health outcome.
A second category of mechanisms is more psychological and behavioral
in nature, and will lead to a negative relationship between inequality
and health even controlling for a person’s own level of income. The low
social status associated with low relative income may lead to increased
stress, which has been shown in experimental animal studies to have
both a direct negative impact on health and an indirect effect through
depression and unhealthy behaviors. In wealthy societies with exten-
sive public healthcare systems, health behavior may be substantially
more important than health expenditures in explaining cross-sectional
variation in health outcomes.

Deaton (2003) provides a thorough review from the economist’s per-
spective on the empirical literature evaluating the inequality hypothe-
sis. That literature dates back to Rodgers (1979), who finds that more
unequal countries have higher age-adjusted mortality rates after con-
trolling for the country’s average income. Numerous researchers sub-
sequently studied the health-inequality relationship using cross-country
or cross-state data, and with findings that also tended to support the

16



inequality hypothesis. However, these aggregate studies have been heav-
ily criticized on methodological grounds of data quality /comparability,
likelihood of omitted variables bias and other problems (Deaton 2003),
so more recent work in this literature uses linked individual-aggregate
data with controls for individual income and background characteristics.
Many of these studies exhibit a great deal of methodological sophistica-
tion and complexity, including the deployment of elaborate multilevel
models. At the same time, almost none have done much to address
the issue of endogenous community selection. For example, none of
the 21 studies cited in the recent review article by Subramanian and
Kawachi (2004) have a research design aimed at addressing endogenous
community selection. Oakes (2004) argues that this failure implies their
resulting estimates “will always be wrong” (p. 1941). Oakes argues that
much of the lack of attention to community selection and other iden-
tification issues is misplaced priority on the use of elaborate multilevel
models. An alternative explanation is provided by Diez Roux (2001):

“To the extent that neighborhoods influence the life chances
of individuals, neighborhood social and economic charac-
teristics may be related to health through their effects on
achieved income, education, and occupation, making these
individual-level characteristics mediators (at least in part)
rather than confounders. In addition, because socioeconomic
position is one of the dimensions along which residential seg-
regation occurs, living in disadvantaged neighborhoods may
be one of the mechanisms leading to adverse health outcomes
in persons of low socioeconomic status. For these reasons,
although teasing apart the independent effects of both di-
mensions may be useful as part of the analytic process, it is
also artificial.” (Diez-Roux 2001, p. 1786)

In this view, the true effect that econometricians have gone to such
great length to estimate is not the quantity of interest anyway. Because
community composition is not under the direct control of policymakers,
the neighborhood effect itself does not correspond to any policy response
of interest.

An alternative explanation is that this question is particularly ill-
suited for the typical methods by which microeconometricians deal with
endogeneity. The inequality-health relationship has several relevant fea-
tures:

1. Health outcomes, particularly the most important ones (mortality
and life expectancy) are affected by events decades in the past.
The hypothesized mechanisms by which inequality affects health
(e.g., stress, depression, increased smoking, drinking, and drug
use) include mechanisms that tend to operate over decades rather
than months.

2. Aggregate measures of income inequality based on household sur-
veys are notoriously noisy measures of the underlying quantity of
interest (inequality in some form of permanent income, possibly
adjusted for credit constraints). The underlying quantity of in-
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terest changes slowly over time, so most year-to-year variations in
measured inequality are noise.

3. The current level of income inequality is the outcome of a complex
interaction of policies and historical accidents. There is no gov-
ernment policy that can have a substantial impact on inequality
without also affecting other variables relevant to health outcomes.

The first two features make the use of panel data with cross-sectional
fixed effects particularly unappealing.

There are also more specific ways in which the existing methods are
unsuitable for the measurement of community effects on health. First,
as Mellor and Milyo (2003) emphasize, particularly important health
outcomes - mortality and life expectancy in particular - are affected by
events decades in the past. As a result the connection between current
community and current health may say little about the overall influ-
ence of community over the life cycle. Because most methods for over-
coming endogenous community choice are based on small short-term
changes in the social environment, these approaches might be limited to
more rapidly-responding intermediate outcomes such as health behav-
ior (smoking/drinking/etc.) and injuries. Another issue, particularly
in the literature on inequality and health, is that community variables
are measured with a great deal of noise. The fixed-effect model used for
the cohort-based research design will be particularly problematic here
- fixed effects models can dramatically amplify the bias associated with
measurement error in explanatory variables.

4.2 Data

The primary data source is the pooled 1996 and 1998 Current Popula-
tion Survey (CPS) March supplement (US Department of Labour 1998).
The sample consists of all CPS respondents at least 18 years of age, and
the outcome variable is a binary indicator of self-reported poor health.
Specifically, respondents were asked “Would you say your health in gen-
eralis...” and are coded as y = 1 if they reported “Fair” or “Poor” and
y = 0 if they reported “Good,” “Very Good,” or “Excellent.” This par-
ticular data source and outcome variable have been used extensively
in the literature on inequality and health (Blakely, Kennedy, Glass
and Kawachi 2000, Blakely, Lochner and Kawachi 2002, Mellor and
Milyo 2002, Mellor and Milyo 2003, Subramanian and Kawachi 2003,
Subramanian and Kawachi 2004). Individual-level explanatory vari-
ables include age, sex, race (black/white/other), education in years, log
equivalized total income (total household income divided by the square
root of household size), employment status (employed/not employed)
and health insurance status (insured/not insured). The community-
level variable is the state-level Gini coefficient for household income,
as calculated by the Census Bureau from the 1990 Census (US Census
Bureau 2000).

The pooled CPS sample includes 188,785 over-18 respondents, of
which 1,015 reported zero or negative household income. In order to
use log household income as an explanatory variable, these cases are
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dropped yielding 187,760 respondents in the sample. Table @ reports
unweighted summary statistics.

Unweighted mean

Variable (std. dev.)
Individual-level characteristics:
Self-reported fair or poor health 0.15
Log equivalized household income 10.03
(0.88)
Age, years 44.9
(17.49)
Female 0.53
Black 0.09
Asian/Other 0.05
Education, years 12.73
(2.71)
Not employed 0.36
No health insurance 0.21
State-level characteristics:
Gini coefficient for household income 0.43
(0.02)
# of individuals 187,760
# of states (including DC) 51

Table 4: Summary statistics for linked CPS-Census data.

4.3 Results under assumption of exogeneity

Table ] shows the basic regression results for the special case of exogene-
ity. These estimates can be considered a benchmark for the subsequent
analysis that considers alternatives to exogeneity. The first set of esti-
mates are for a linear model, and are estimated using OLS with cluster-
robust estimates of standard errors. The second set of estimates are for
a logistic model with a state-level random effect, and are estimated by
maximizing the restricted penalized quasi-likelihood.

In general, Table [5| shows a statistically significant association be-
tween measured state-level inequality and the probability of self-rated
fair/poor health. The individual-level coefficients are estimated with
great precision due to the large sample size, and are almost all statisti-
cally significant.

The logistic model estimates in Table [f] can be compared to those
seen in previous research using this data source. The logistic coefficient
estimate of 4.608 corresponds to an odds ratio of 1.26 associated with
an increase in the state-level Gini coefficient of 0.05. This is similar in
magnitude to the odds ratios of 1.31 to 1.39 reported by Subramanian
and Kawachi (2003) also using CPS data.
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Linear Logistic
Variable (1) (2) (1) (2)

State-level income inequality ~ 0.903 0.299 8.564 4.608
(0.159)  (0.122)  (1.226) (1.173)

Log income -0.031 -0.254
(0.002) (0.009)

Age (yrs) 0.005 0.036
(<0.001) (<0.001)

Female -0.007 -0.082
(0.001) (0.015)

Black 0.050 0.437
(0.007) (0.024)

Asian/other 0.010 0.174
(0.006) (0.038)

Education (yrs) -0.013 -0.093
(0.002) (0.003)

Not employed 0.129 1.089
(0.003) (0.017)

No health insurance 0.066 0.529
(0.005) (0.018)

Table 5: Regression results for model with assumption of exogeneity (A = 0).
Linear model estimated using OLS, with cluster-robust standard errors. Lo-
gistic model estimated as random-intercept multilevel model with maximum
likelihood.
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Comparison between the linear and logistic model estimates is some-
what complicated by the fact that linear models produce constant marginal
effects and variable odds ratios while logistic models produce variable
marginal effects and constant odds ratios. To make a reasonable com-
parison we consider a representative case of an individual with charac-
teristics that imply a probability of self-rated fair/poor health of 15%
(the average in the data). For this representative individual, the linear
model implies a marginal effect of 0.299 while the logistic model im-
plies a marginal effect of 0.588. The odds ratio for this representative
individual associated with an increase in the state-level Gini coefficient
of 0.05 is 1.26 for the logistic model and 1.12 for the linear model. As
these results suggest, using a linear model results in a somewhat weaker
but still statistically significant association between the state-level Gini
coeflicient and the probability of self-rated fair/poor health.

4.4 Results

The estimates reported in Table [§] are based on models in which ex-
ogeneity is assumed. As discussed in Section [2] this is a strong and
somewhat indefensible assumption, so we evaluate the effect of devia-
tions from exogeneity

The model to be estimated is the linear model (2) from Table
Table |§| reports the range of estimated coefficients on inequality ©(A)
as a function of restriction on the relative correlation A € A.

Figure [3] displays the results from Table [ graphically. The top
graph in the figure shows the results for a wider range of A\ values,
while the bottom graph shows more detail for a narrower range of .
In both graphs the line describes ;\(0), the shaded area indicates the
correspondence ©([0, A]), and the dot indicates the OLS coeflicient of
0.30 (as reported in Table

As the figure and table show, increases in A from the benchmark case
of exogeneity are generally associated with decreases in the estimated
marginal effect of inequality. A relative correlation of 23% or greater
(i.e., A > 0.23) implies that the range of point estimates for 6 consis-
tent with the data includes zero. That is, in order to interpret this data
as demonstrating a positive causal relationship between inequality and
poor health, we would need to claim that the correlation between in-
equality and unobserved factors affecting health is no greater than 23%
as large as the correlation between inequality and the observed factors
that affect health.

5 Conclusion

The methodology developed in this paper provides a simple means of
providing bounds on causal parameters under interval restrictions on
the degree of endogeneity. In the application using the experimental
Project STAR data, the bounds on the class size effect are narrow and
the lower bound is strictly positive even if class size is several times more
strongly correlated with unobserved factors than with the observed con-
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A O(A)

{0.00} 0.30
(0.00,0.10]  [0.16,0.30]
[0.00,0.20]  [0.03,0.30]
[0.00,0.30]  [—0.10,0.30]
[0.00,0.40]  [—0.24,0.30]
[0.00,0.50]  [—0.38,0.30]
[0.00,0.75]  [~0.73,0.30]
[0.00,1.00]  [—1.09,0.30]
[0.00,2.00]  [—2.71,0.30]
[0.00,3.00]  [—4.70,0.30]
[0.00,4.00]  [~7.37,0.30]
[0.00,5.00]  [—11.83,0.30]
[0.00, 6.00] (—00,00)
[0.00, c0) (—00, 00)
(—00,0.00]  [0.30,17.04]
A* 5.17

o 17.04
A0) 0.23

Table 6: Estimated effect of income inequality on health. Each row reports
a range of estimates for the true effect (0) consistent with a different range
of possible values for the relative correlation of inequality with health-related
unobservables ().
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trol variables. In the application using the observational CPS data, the
bounds on the effect of income inequality on the prevalence of fair/poor
health are much wider, and the lower bound is negative as long as
the upper bound on the correlation between inequality and unobserved
factors is at least 23% of the correlation between inequality and the
observed control variables.

Several areas remain for future work. The methodology can be ad-
vanced along two main fronts. First, the inference in the current paper
is based on asymptotics that are known to provide a poor approximation
in finite sample for estimators of the type under consideration. Second,
the model developed in Section[2]is based on a simple linear model with
random sampling, and many applications involve complications such as
fixed effects, clustered samples, etc. Extending the model to handle
such cases will provide greater applicability.

Additional applications should also be explored. The Project STAR
data and the CPS inequality and health data to some extent represent
opposite extremes. Project STAR is a relatively (though not perfectly)
clean experiment and the inequality and health data are particularly
plagued with endogeneity problems. It would be interesting to see how
the results will be different for an experimental study with more exten-
sive deviations from the experimental protocol than are seen in Project
STAR, and for an observational study in which researchers more se-
riously argue for exogeneity of treatment than do researchers in the
inequality and health literature.
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A Proofs of propositions (incomplete)

A.1 Proposition

To prove property (1), note that:

corr (z,y — 0z — P(y — 02| X))
corr (z, P(y — 02| X))

cov(z,y—0z—P(y—0z|X))

Vvar(z)var(y—0z—P(y—0z| X))
cov(z,P(y—0z|X))

\/var(z)var(P(y79z|X))

cov(z,y) — Bvar(z) — cov(z, P(y| X)) + Ocov(z, P(2| X))
cov(z,y) — Ocov(z, P(z| X))

var(P(y — 0z|X))
var(y — 0z — P(y — 0z| X))
We can apply several properties of the linear projection, specifically

that cov(z, P(z|X)) = var(P(z|X)) and var(y — P(y|X)) = var(y) —
var(P(y|X)), to further derive:

AO) =

X

_cov(z,y) — Bvar(z) — cov(z, P(y| X)) + Ovar(P(z|X))
AO) = cov(z,y) — Qvar(P(z|X))

\/ var(P(y — 0z]| X))

var(y — 0z) — var(P(y — 0z|X))

cov(z,y) — Bvar(z) — cov(z, P(y| X)) 4+ Bvar(P(z|X))
cov(z,y) — Qvar(P(z|X))

\/ var(P(y|X)) — 20cov(P(y|X), P(z| X)) + 02var(P(z]X))
var(y) — 20cov(y, z) + 0%var(z) — var(P(y|X)) + 20cov(P(y|X), P(2| X)) — 0%2var(P(z| X))

Taking limits and applying ’Hopital’s rule we get:
. _ war(z) —var(P(z|X)) var(P(z|X))
Jm A(0) = varPCEX)) N\ var(s) = var(P(2[X))

_ \/W( z) — var(P(z| X))
var(P(z|X))

1
- oVE !
The same applies for limg_._oc A(6)

To demonstrate property (2), simply note that the numerator and
denominator of A(f) are both differentiable in 0, so application of the
quotient rule implies differentiability of A(f) unless its denominator of
is zero. Its denominator is zero if:

0

cov(z, P(y — 02| X))
cov(z, P(y| X)) — fcov(z, P(z|X))
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Solving for 6, we get property (2). For property (3), we need to show
that the numerator of A(f) is nonzero when 6 = 6*:

cov(z,y—0"2— Py —0"2|X)) = cov(z,y) — 0 var(z) — cov(z, P(y — 0" 2] X))
cov(z, P(y| X))

= cov(z,y) — cov(z, P(z| X))

var(z)

cov(z,y) _ cov(z,P(y|X))
var(z) ~—  wvar(P(z|X)) °

So limg_.g+ |A(0)] = oo unless

A.2 Proposition
This proposition follows directly from Proposition

A.3 Proposition

The first result follows directly from substitution of equation into
the definition of A(.). The second result is true by the construction of

o).

A.4 Proposition

The first result follows from the straightforward application of the law
of large numbers (implying that the sample averages are consistent esti-
mates of the corresponding population moments) and Slutsky’s theorem
(since A(f) is a continuous function of the population moments for all
0 #£6%).

For the second result, note that 61 (A) is continuous in population
moments if di\i(:) lo=6, (a) # 0. In that case, consistency of 01, (A) follows
from Slutsky’s theorem.

A.5 Proposition

Note that 07 (A) is differentiable in population moments under these
conditions, so the result follows from application of the delta method.
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