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Abstract

Many government policies either target the underlying supply infrastructure or have
indirect effects on market structure. In this paper we seek to understand the impact of
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CAH status. Because these choices have dynamic impacts and even rural hospitals
have geographically close competitors, we model hospitals as a dynamic oligopoly. We
estimate the structural parameters from this model using a two-step inference method
and assess the structural and welfare impacts of the CAH program. Our methods
extend current estimation techniques for dynamic oligopoly models to allow for invest-
ment behaviors that are more consistent with the data. Our estimated parameters on
investment costs and the costs of CAH conversion appear reasonable in magnitude.
Preliminary results reveal that the CAH program increases the profits of converting
hospitals by $260,000 and decreases exits by 5%.
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1 Introduction

Governments often enact policies that target the underlying supply infrastructure, either

directly or indirectly. Examples abound and span countries and industries. Agricultural

price supports impact the number and size distributions of farms. Education vouchers and

the Charter school option affect the number and size distribution of private schools. Given

the magnitude of these supports the welfare consequences of these programs are likely large.

However, assessing the impact of these programs on welfare and other outcomes is often a

difficult task. These programs affect the returns to market participation; thus their impact

will be a direct consequence of entry, exit and investment decisions by a potentially large

number of organizations. Assessing the impact of these programs requires measuring the

impact on dynamic equilibrium outcomes (both discrete and continuous) of forward-looking

agents. Until recently the estimation of the underlying “deep” parameters necessary to

calculate the impact of these programs on industry market structure was computationally

burdensome. However, recent advances in the estimation of dynamic games has made such

estimation feasible.

In this paper we seek to understand the impact of the Critical Access Hospital (CAH)

program on the U.S. rural hospital infrastructure and societal welfare. The overarching pur-

pose of this program is to improve the access to care of the rural population by keeping open

hospitals that would otherwise close. The CAH initiative is a voluntary program in which

hospitals limit their capacity, measured by beds, and services to proscribed levels. In return

for participating, hospitals opt out of the standard Prospective Payment System (PPS) and

receive cost-based reimbursements from the Medicare program. These payments are gener-

ally significantly more generous than what the hospital would earn under PPS. The program

was initiated in 1997 as a provision of the Balanced Budget Act of 1997 and since then over

1,100 rural hospitals (roughly 25% of all US hospitals) have converted to CAH status. In

2006, CAH hospitals were expected to receive $5 billion in cost-based reimbursements, $1.3

billion more than what they would have received under PPS (MedPAC 2005). Not only is

the program interesting from an economics perspective – it affects organizational incentives
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along multiple dimensions; but the magnitude of the expenditures imply that a CAH program

evaluation is of independent interest.

To evaluate the impact of the CAH program, we estimate a dynamic model of rural

hospital exit, investment and CAH status.1 The CAH program affects both the level of

Medicare payments as well as the hospital’s incentives to cost-minimize. Our framework

allows average costs to be a function of these incentives. In our framework hospitals seek

to maximize an objective function that includes both profits and volume, in the case of

not-for-profit hospitals. As most rural hospitals are not-for-profit organizations, we follow a

long tradition in health economics in allowing this deviation from pure profit maximization.2

Each period, hospitals endogenously select their size (as measured by number of beds), decide

whether to exit and post-1997 select whether or not to invest in becoming a CAH. The

decisions are made in dynamic equilibrium, where hospitals take account of the effect of their

decisions on rivals. Our model is a function of unknown parameters that pertain to the

objective function for not-for-profits, the cost function for investing or disinvesting in beds,

and the costs of obtaining CAH status.

Following the dynamic decisions, hospitals engage in static production. First, they decide

on prices to charge to non-Medicare patients. Individuals then fall ill and decide at which

hospital to seek treatment. They make their decisions based on their distance to each hospital,

their own diagnosis, and characteristics of the hospital, such as beds. Non-Medicare patients

also incorporate prices into their decisions. Hospitals that have limited their size, for instance

to participate in the CAH program, will likely see reduced demand because of this.

To estimate the dynamic parameters, we build upon the approach of Bajari et al. (2007)

(henceforth BBL). BBL’s insight is that the observed strategies conditional upon the states

and transitions between states in a dynamic game can be used as “data” in an estimation

algorithm thereby averting the computational burden of solving for the fixed-point of the

game for every evaluation of the parameter vector.3 Pakes et al. (2007), Aguirregabiria and

1Entry is rare in rural hospital markets and therefore our analysis does not consider it.
2See, for example, Newhouse (1970), Pauly (1978), Lakdawalla and Philipson (1998) and Sloan (2000).
3Hotz and Miller (1993) first proposed a similar two-step approach to estimate the parameters of a single-

agent dynamic decision making process.
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Mira (2007) and Pesendorfer and Schmidt-Dengler (2007) have also suggested approaches to

estimate parameters of dynamic games that rely on similar ideas. While BBL suggested the

possibility of allowing for private information in the investment process, this is the first paper

that introduces private information in the investment process. This allows firms’ investment

decisions to differ conditional on state. We develop a version of the BBL algorithm that allows

for this extension.4 Using this estimation algorithm, we recover the dynamic parameters

noted above. We also recover static parameters of the consumer utility function. This then

allows us to use those parameters to solve for the equilibrium under different counterfactual

scenarios.

The CAH program has dramatically transformed the rural hospital landscape. Incentives

provided in the program radically reduced the average bed size of rural hospitals. Fur-

thermore, our initial estimates suggest that the CAH program increased profits for poorly

performing rural hospitals. That is, insofar as the program’s intent was to provide extra

assistance to hospitals that were at risk of failing, it achieved that goal. Our estimates of

the dynamic parameters are sensible and have several interesting implications. First, not-for-

profit and government hospitals intrinsically value treating patients and operating in addition

to profits. Second, hospital cost of investment is non-convex and asymmetric. Third, our ini-

tial simulation on one hospital suggests that the CAH program does not dramatically impact

exit probabilities.

Our work contributes to a recent and fast growing literature that uses the results from the

estimation of dynamic games to perform policy evaluations, such as Gowrisankaran and Town

(1997), Benkard (2004), Jofre-Bonet and Pesendorfer (2003), Ryan (2006) and Collard-Wexler

(2006). In the following section we provide institutional background of the CAH program and

review the literature. Section 3 describes our data, section 6 provides further descriptions

through a reduced form analysis. Our model is presented in section 4, and section 5 describes

our estimation method. The results and policy experiments are presented in sections 7 and

8 respectively, and section 9 concludes.

4The details of this estimation approach are described in a companion paper.
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2 The Critical Access Hospital Program

2.1 Background

The CAH program was enacted in the Balanced Budget Act (BBA) of 1997.5 Designated

CAHs receive cost-based Medicare reimbursements for inpatient, outpatient post-acute (swing

bed) and laboratory services. To qualify for the program, hospitals must be 35 miles from

a primary road and 15 miles by a secondary road to the nearest hospital. However, this

distance requirement can be waived if the hospital is declared a “necessary provider” by the

state, and, until recently, the distance requirement does not appear to be binding. Most

CAHs are less than 25 miles from a neighboring hospital.6 The BBA legislation stated that

CAHs can only treat 15 acute inpatients and 25 total patients including patients in swing

beds. A swing bed is one which can be used to provide either acute or skilled nursing facility

care. In the 1997 legislation the maximum size of a hospital is 15 beds and the length of stay

is limited to 4 days for all patients.

CAH hospitals are required to provide inpatient, laboratory, emergency care and radiology

services. A CAH must develop agreements with an acute care hospital related to patient

referral and transfer, communication, emergency and non-emergency patient transportation.

The CAH may also have an agreement with their referral hospital for quality improvement

or choose to have that agreement with another organization.

The program’s rules have been modified several times since its inception. Table 1 sum-

marizes the important legislative and regulator changes in the program. The most important

of these changes are: 1) The Balanced Budget Reconciliation Act (BBRA) of 1999 changed

the length of stay requirement and allowed states to declare hospitals in Metropolitan Sta-

tistical Areas to be designated ‘rural’ for the purposes of CAH designation; 2) The Medicare

Prescription Drug, Improvement and Modernization Act (MMA) of 2003 increased the acute

inpatient limit from 15 to 25 acute patients and increased the payments from 100 to 101

5Much of the information in the section is culled from MedPAC (2005). Readers desiring more information
about the CAH program are encouraged to consult this source.

6MedPAC (2005).
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percent of costs. These program changes provide variation in payoffs to becoming a CAH

across both time and hospitals and thus help identify the parameters of interest. The varia-

tion also allows us to estimate the model on a subset of the data and forecast the impact of

programmatic changes on hospital behavior and industry evolution. We can then examine

the validity of our model by comparing these forecasts to policy realized hospital behavior.

The CAH legislation provides resources for hospitals to hire consultants to project rev-

enues and costs under the CAH program and determine which strategy is best for the

hospital given their objectives. Thus, the commonly made assumption that organizations

make rational forecasts of future profit paths appears to be reasonable in our application.

Figure 1 shows that the rate of conversion to CAH remains very low until 1998. In 1999

the number of CAHs doubles and keeps growing at a fairly constant rate of about 4% per year

until the end of our sample period. We believe that the delay between the enactment of BBA

in 1997 and the timing of conversion is due to the application process, which requires large

amount of paperwork, inspection visits and CMS approval.7 By 2005, 25% of the hospitals

in our sample have adopted the CAH status. It is said that conversion rates should decline

after 2006, when the minimum distance requirement will be enforced (MedPAC 2005). We

use our model to evaluate that out-of-sample prediction.

The spatial distribution of CAHs is shown in Figure 2. CAHs are present in most states,

except New Jersey, Delaware, Rhode Island, Connecticut, and Massachusetts, which do not

participate in the program. CAHs concentrate in the Mid-West, and are mostly outside of

MSAs.

2.2 Previous Research

There have been a number of contributions in the economics literature that relate to our

study. There is an extensive literature on hospital closures, which have provided evidence on

the characteristics of hospitals that make them more likely to exit the market. For example,

7For example, in the state of Wisconsin, the application process is an 18-step process, detailed at
http://www.worh.org/pdf etc/AppFlowChart.pdf
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Lillie-Blanton et al. (1992) and Ciliberto and Lindrooth (2007), find that smaller hospitals are

more likely to close. Wedig et al. (1989) finds that for-profit hospitals are more likely to exit

due to competing uses of capital. Similar conclusions are reached by Ciliberto and Lindrooth

(2007) and Succi et al. (1997). Hansmann et al. (2002) consider four types of ownership and

they also find that for-profit hospitals were the most responsive to reductions in demand by

exiting the market, followed by public nonprofits, religiously affiliated nonprofits, and secular

nonprofits responded the least. These papers have studied what determines exits, without

taking into account strategic interactions, as our work does.

With respect to the effect of closures on surviving hospitals, Lindrooth et al. (2003)

focused on urban hospitals and found that the costs per adjusted admission declined by

2-4% for all patients and by 6-8% for patients who would have been treated at the closed

hospital. They abstract from the issues of access to care that closures generate due to their

focus on urban hospitals within 5 miles from the closing one. In contrast, McNamara (1999),

studies the impact of rural hospitals closures on consumers’ surplus using a discrete choice

travel-cost demand model. He finds that the average compensating variation for the closure of

the nearest rural hospital that makes the average shortest distance increase from 9 miles to 25

miles is about $19,500 dollars of 1988 per sample hospitalization. These papers have studied

a particular aspect of welfare, and have not taken into account how efficiency and access

to care interplay, being this another contribution of our paper. In addition, all the papers

mentioned above document the period before 1998, that is before hospitals were effectively

converting into CAH.

Several researchers have previously studied detailed aspects of the impact of the CAH

program. Many of these papers study the effects of the program from the point of view of the

hospital that converted. The financial effects of CAH conversion are studied by Stensland

et al. (2003). Comparing hospitals converting in 1999 pre-conversion and post-conversion

data, and to other small rural hospitals they find a significant association of CAH conversion

with increases in Medicare revenue (which is to be expected given that hospitals choose to

convert), increases in hospital profit margins from -4.1% to 1.0%, and increases in costs per

discharge of 17%. They state that increased Medicare payments are borne by federal taxpay-
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ers, but local patients and CAH employees benefit from the improved financial conditions,

however, they do not calculate whether the benefits are worth their cost. Stensland et al.

(2004) re-do their analysis for hospitals converting in 1999 and 2000, reaching similar con-

clusions. Other papers such as Casey and Moscovice (2004) study the quality improvement

initiatives of two CAH after conversion, and conclude that the cost-based payments help the

hospitals to fund activities that would improve quality of care such as additional staff, staff

training and new medical equipment.

In contrast with the literature mentioned above, our paper studies the welfare impact

of the CAH program on both consumers and producers, taking explicitly into account the

strategic interactions between converters and non-converters, and being able to provide an

overall assessment of the impact of the program. We list the channels by which welfare can

be affected by the policy in the next subsection.

2.3 Possible Welfare Consequences of the CAH Program

The CAH program affects hospitals’ incentives along a number of dimensions, and induces

behavior whose aggregate welfare effects are unclear. The program affects rural hospitals’

exit probabilities, keeping open hospitals that would otherwise close. This may be welfare

improving for the residents of rural areas that would have to travel longer distances to receive

medical care had the hospital exited the market. On the other hand, the program may be

causing an inefficient allocation of capital by preventing its flow to higher return alternatives.

If less productive hospitals are more attracted to adopt the CAH status, the program will

interfere with an evolutionary improvement of the industry as in Jovanovic (1982).

In addition, if a hospital stays open, it may affect the patient volume of its competitors,

and therefore, their profits. Because states could waive the distance requirement, there are

hospitals receiving cost-based reimbursement, even though they are not critical for people’s

access to care, which would be welfare reducing.

The cost-based payments enable hospitals to invest in quality improvement as noted by

Casey and Moscovice (2004), however, it reduces the incentives to cost minimize, although
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it does not eliminate them, because non-Medicare patients’ expenditures are still reimbursed

in a prospective fashion.

As discussed in this section, to assess the overall welfare impact of the CAH program is

a complicated task that requires consideration of dynamic equilibrium outcomes. By means

of a dynamic oligopoly model we measure the overall welfare of the program, and provide a

sense of how efficient are the current outcomes by comparing them to the planner’s solution.

In the remaining part of the paper we describe our strategy to achieve this goal.

3 Data

Our data is constructed by pooling information from various sources. The primary source of

data are the publicly available Hospitals Cost Reports Information System (HCRIS) from the

Centers for Medicare and Medicaid Services (CMS), years 1994-2005. Hospitals are required

to file a cost report at the end of each fiscal year, where they report detailed financial and

operational information needed to determine Medicare reimbursements. Each observation

represents a hospital in a given year, and hospitals are repeatedly observed generating an

unbalanced panel. Each hospital is identified over time by a unique provider number assigned

by CMS. Given our focus on the impact of introducing the CAH reimbursement policy and

the fact that the cost reports are subject to annual audits by fiscal intermediaries, the HCRIS

provide useful data for our purposes.8 It records information on hospitals’ location, number

of beds, inpatient discharges, inpatient and outpatient revenues, salaries, and accounting

information such as inpatient and outpatient costs, depreciation, asset values and profits.9

The sample we use in the estimation contains the non-federal general acute care hospitals.

The information from the HCRIS was complemented with data on the timing of conversion

to CAH from the Flex Monitoring Team.10 When hospitals convert into CAH, a new provider

8This data is also used by the Prospective Payment Assessment Commission to recommend PPS changes
to Congress.

9In the data, hospitals’ reporting periods differ in terms of their length, and dates of beginning and
end of report. This caused many hospitals to have multiple observations by year, and the information to
be misaligned across hospitals in a temporal sense. We disaggregated the data at the quarter level and
aggregated it back with a consistent length (one year) and a consistent beginning and ending period.

10The Flex Monitoring Team is a collaborative effort of the Rural Health Centers at the Universities of
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number is issued by CMS, even if ownership does not change. By using data from Flex, we

were able to link the new and old provider numbers, which allowed us to construct the pre-

conversion history that led the CAHs to convert. For our purposes this was an important

step, because otherwise our data would look as if CAH conversions were new entries, when in

fact, mostly existing facilities were converting to a new status. According to this data source

only 14 hospitals entered a particular market as a new facility, and therefore, we do not model

entry. In addition, the Flex data contains accurate information on the number of beds for

the hospitals that converted, which was used to verify the HCRIS information. The location

of hospitals was completed with latitude and longitude data from the American Hospital

Association Annual Survey (AHA). The AHA and HCRIS data sets are easily linkable by

the CMS provider number which is present in both data sets. We use latitude and longitude

to compute distances to define the markets and to link the hospitals’ data to Census tract

level information on population characteristics – primarily focusing upon the size of the under

and over 65 year old population.

In order to calculate geographically varying demand and supply side variables which

potentially affect the profitability of CAH conversion as well as the profitability of remaining

in operation as an acute care facility we first define a 150 km circle about the hospital. In

this circle all hospitals are potential competitors with hospitals that are further away having

less strategic impact than nearby hospitals. Potential patients are all the residents of the

census tracts within a radius of 150 Km. Given this circle and the distribution of patients and

hospitals, we then specify a model of hospital choice where patient preferences for a particular

hospital will depend upon distance to the hospital, bed size and teaching status. The census

tract information is used to calculate the expected volume of Medicare and non-Medicare

patients.11

Because the policy’s stated objective is to maintain access to emergency and inpatient

care for rural residents, we characterize rurality using the Rural-Urban Commuting Area

Minnesota, North Carolina and Southern Maine, under contract with the Office of Rural Health Policy. The
Flex Monitoring Team monitors the performance of the Medicare Rural Hospital Flexibility Program (Flex
Program), being one of its objectives to improve the financial performance of CAH.

11We assume Medicare enrollment is equivalent to being age 65 or older.
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Codes (RUCA), version 2.0.12 These measures of rurality are based on the size of cities and

towns and their functional relationships as identified by work commuting flows, and have

been used by CMS to target other rural policies, such as the ambulance payments. The

RUCAs are available at the Census tract and zip code levels. In general CMS considers rural

all census tracts that have RUCA greater or equal than 4, and we adopt the same criterion

in this paper. 13 The definitions of the RUCAs are shown in Table 2.

We complete our data construction with information from the Department of Health and

Human Services’ Office of Inspector General’s (OIG) reports on hospital closures, years 1994-

2000. These reports contain a list of the hospitals that exited the market during the year.

Because the year of exit in the OIG reports differs to the last report filed for about a third of

the exitors, we use the OIG information to identify exitors and we assume the hospital exits

at the end of the year of their last report. After 2000 we proceed in the same fashion, but

our source of data to identify closures are the Registered Deletions section from the AHA

Survey, years 2001 to 2005.

4 Model

4.1 General setup

We specify a dynamic oligopoly model of interaction between hospitals where the decisions

of hospitals reflect a Markov Perfect equilibrium. This model follows in the spirit of dynamic

oligopoly models developed by Ericson and Pakes (1995) and first applied to the hospital

industry by Gowrisankaran and Town (1997). The specifics of our model follow more recent

work on estimation of dynamic oligopoly models, such as Ryan (2006) and Collard-Wexler

(2006), and build on these works by incorporating functional forms for investment that are

more consistent with the data and specifics of the small hospital sector. In comparison to

12These measures are developed collaboratively by the Health Resources and Service Administration, the
Office of Rural Health Policy, the Department of Agriculture’s Economic Research Service, and the WWAMI
Rural Health Research Center.

13Department of Health and Human Services, Medicare Program, Revisions to Payment Policies, etc.; Final
Rule. Dec 2006.
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Gowrisankaran and Town (1997), our current work incorporates a richer model of the hospital

sector – that allows for variation in geography, size and hospital characteristics – and can be

estimated using recently available micro-level data and estimation techniques for dynamic

models (see Bajari et al. (2007)).

The unit of observation in our model is a market, generally a rural area. At any point

in time, each market contains a set of hospitals 1, . . . , Jt, who are strategic, forward-looking

players. Each period, there is an identical set of consumers 1, . . . , I, who seek treatment

for their illness. Hospitals are differentiated by their location, CAH status, size, ownership

structure and productivity, while consumers are differentiated by their location and illness

cost. Time is discrete with a period corresponding to a year and hospitals discount the

future with the same discount factor β. In our model, dynamic considerations are relevant

for hospitals because hospitals’ characteristics are persistent from year to year.

We specify that any hospital with 225 beds or less located in a RUCA zip code of four or

higher is a strategic player of our game. We limit our sample to these hospitals because large

or urban hospitals will have different objectives, would be unlikely to qualify for CAH status,

and likely do not make their decisions in response to small rural hospitals located in an area

around them. Nonetheless, patients may choose these large hospitals. For instance, patients

in a rural county may travel to a big-city hospital located relatively nearby to them. Indeed,

regulations require CAH hospitals to develop referral agreements with a larger hospital. For

this reason, we let all other hospitals in the U.S. be modeled as non-strategic players whose

characteristics evolve exogenously.

Each period, we model a game with four stages. First, nature moves and provides each

hospital with a period-specific investment cost shock. Second, knowing the value of their

individual shocks, hospitals in the market simultaneously choose their strategies for investing

in beds, exiting and obtaining CAH status. Third, hospitals choose prices for non-Medicare

patients. Finally, each patient selects a hospital based on their insurance status and other

characteristics. Note that we do not allow hospitals to change their locations, productivity

or ownership status.

We do not model entry since entry is very rare in our data. In particular, among hospitals
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in our sample, 97 percent existed at the first period of our estimation, in 1998. Given this

limited amount of entry, we believe that entry is not a huge feature of this market. Of course,

given that our model is dynamic, we might expect more entry in the long run, as current firms

exit due to random shocks. However, it would be hard to credibly identify the parameters

on the entry distribution given the paucity of entry in the data.

Hospitals make their investment, exit, CAH conversion and production decisions in order

to maximize the expected discounted values of their net future returns, which depend on

their onwership type ownj. We model three ownership types: for-profit (FP), not-for-profit

(NFP) and government (Gov). In our model, a hospital’s ownership type is fixed and cannot

be changed.

For a FP hospital, returns are synonymous with profits, while for NFP and government

hospitals, returns are a weighted sum of profits, expected patient volume and the provision

of service, which we denote as having a positive number of beds.

Specifically, let bedsjt denote the number of beds, EΠjt expected profits net of investment

expenses and EV oljt expected volume, all for hospital j at time t. Then, at any time τ , FP

hospitals seek to maximize

Eτ

[
∞∑

t=τ

βt−τEΠjt

]
,

while NFPs seek to maximize

Eτ

[
∞∑

t=τ

βt−τ (EΠjt + αNFP
v EV oljt + αNFP

p 1{bedsjt > 0})

]
, (1)

where αNFP
v and αNFP

p are parameters to estimate.

Note that a weight term on expected net profits for NFPs is not identified: if we included

such a term in (1), we could then multiply the three α terms by a constant and all observable

predictions of the model would be the same, as this would effectively just change the units

of NFP utility. Hence, in (1), we normalize the weight on expected net profits to be one.

We assume that government hospitals maximize a similar objective function to (1), but with

weights αGov
v and αGov

p .
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4.2 Investment in beds and CAH status

We now detail the specifics of the investment processes that determine changes in the number

of beds and in CAH status and through this in industry structure. Let CAHjt denote CAH

status for hospital j at time t. At the start of each period t, each hospital j faces a mean

cost of investment that is common across hospitals and an i.i.d. shock to its investment cost,

ǫjt. We assume that hospital j knows the value of ǫjt prior to making its time t investment

decision but that it does not know the value of other firms’ shocks, and we let ǫjt be distributed

N(0, σ2), where σ is a parameter that we estimate.

Knowing ǫjt, each hospital simultaneously chooses a level of investment x which denotes

the number of beds to be added. We allow x to be positive, negative or zero. The investment

in beds is realized at the start of the following period. We use the following functional form

for investment:

InvCost(x, ǫ) = 1{x > 0}δ1 + 1{x > 0}δ2x + 1{x > 0}δ3x
2

+ 1{x < 0}δ4 + 1{x < 0}δ5x + 1{x < 0}δ6x
2 (2)

+ (1{x < 0}δ7 + 1{x > 0})xǫ.

Our investment choice is motivated by several important factors. In our data, hospitals

do not alter their investment level for the vast majority of years. This suggests that there are

substantial fixed costs for investment. In addition, the marginal costs of positive investment

are likely to be very different than the marginal costs of negative investment. A positive

investment involves building a new physical facility and providing medical equipment for

that facility. Given the specificity of this investment, the scrap value of selling that facility is

likely less than the cost of building it. Thus, we use a quadratic adjustment cost of investment

with the cost of investment allowed to be different for positive or negative changes in the

number of beds. This specification is similar to that of Ryan (2007) and a long literature

that he cites.

Our investment process deviates from the literature in that we allow for the i.i.d. invest-

ment cost shock ǫjt. The use of an investment cost shock allows us to have a model where

investment levels can vary for a hospital at a given state, as we find in the data. We let the
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effect of this shock vary for a positive or negative investment level, through the parameter δ7.

We restrict δ7 to be positive. Note that variations in ǫ will generate variations in investment

levels for any state. In particular, a higher value of ǫ means a higher increment in cost for

higher x. This implies that investment is weakly decreasing in ǫ for any state for reasonable

profit functions. We impose this weak monotonicity property as an assumption. As we dis-

cuss in Section 5 below, the monotonicity assumption allows us to estimate our model with

an adaptation of the techniques of Bajari et al. (2007).

A hospital can exit the industry by disinvesting in beds until it has none left. Once a

hospital has no beds it is assume to have permanently exited the industry. It can no longer

build beds or otherwise earn profits. Like other investment realizations, exits occurs at the

start of the following period.

Concurrently with the investment decision, each non-CAH hospital simultaneously decides

whether it wants to convert to CAH status. The hospital pays a fee cCAH ≥ 0 in order to

attempt to convert to CAH status in the following period. Conversions to CAH status must

be approved by the government and this approval process is lengthy, potentially costly, and

uncertain. Hence, we model the CAH approval process as stochastic, with the outcome

occurring at the start of the next period. We assume that firms can choose the CAH fee,

and that a greater fee results in a greater chance of successful approval of CAH status.

Specifically, we let

Pr(CAH approval|cCAH) = 2exp(γcCAH)/(1 + exp(γcCAH)) − 1, (3)

where γ is a parameter to estimate. Note that the specification is designed to be similar to

a logistic model but different in that a firm that pays cCAH of 0 has a zero probability of

becoming a CAH hospital.

In our model, CAH hospitals are not allowed to revert to non-CAH status. We define

Pr(CAH approval) = 0 for CAH hospitals. Also, we assume that any CAH hospital with

more than 25 beds has any beds over 25 removed. We assume that the cost of this elimination

of beds is zero. We make this assumption to be consistent with the regulations that specify

that CAH hospitals are not allowed to have more than 25 beds.
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4.3 Hospital production process

After investment, the hospital production process occurs. Hospitals incur both fixed costs,

FCjt and marginal costs mcijt from treating patient i. These costs are known at the start

of the third stage. We assume that fixed costs consist of an aggregate term and a hospital-

specific term,

FCjt = FC + F̂Cj.

Similarly, we assume that marginal costs consist of a patient specific term and a hospital

efficiency term,

mcijt = sevi + m̂cj .

We let sevi denote the patient’s severity of illness, and allow marginal costs to vary based

on severity of illness. Severity of illness, in turn, is a function of DRGs and other observable

characteristics.

Patients are also differentiated by their insurance insit which can be Medicare (Med)

or non-Medicare (NM). Knowing their cost structure, hospitals simultaneously set the base

price for non-Medicare patients, which we call pjt. The price pjt is adjusted based on patient

severity of illness, so that the total bill for a patient with base severity sevi is pjtsevi. Pa-

tients, in combination with their insurance companies, will pay the hospital this price upon

treatment.

CAH hospitals submit a bill to Medicare for their cost of treating Medicare patients that

is based on average cost, which we denote acijt. Note that

acijt =
FCjt +

∑I

i=1 mcijt

I

Medicare reimburses the hospital as a fixed percentage, rCAH , of average costs. In contrast,

non-CAH hospitals submit sevi (essentially DRGs) to Medicare, and are reimbursed some

fixed percentage rM of sevi.

Let Prijt denote the probability that patient i chooses hospital j. Then, we can express

expected hospital profits EΠjt for CAH hospitals as:

EΠCAH
jt =

∑

insi=Med

Prijtr
CAHacijt +

∑

insi=NM

Prijt(pjt − m̂cj)sevi − FCjt, (4)
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while for non-CAH hospitals, the term in the first sum of the equation analogous to (4) would

be Prijtr
Msevi.

The final stage is for patients to choose the hospital at which to seek treatment. Each

patient makes a discrete choice of one of the hospitals in the market, where the set includes the

large, urban hospitals whose decisions we treat as exogenous. An important determinant of

hospital choice is distance. Let location denote geographic location (of a hospital or patient),

distanceij denote the straight-line geographic distance between patient i and hospital j,

closestijt be a dummy for the hospital being the closest to the patient at time t and teachj

is a dummy taking the value of one if the hospital is a teaching institution.14

Let us first consider Medicare patients. These patients pay only a fixed deductible for the

hospital treatment. Since we assume that patients are constrained to choose some hospital,

we can ignore this deductible. We can write the utility function for Medicare patients as

uMed
ijt = ūijt + eijt, where

ūMed
ij = hMed(distij , closestij, bedsj , CAHj, teachj) (5)

and eijt is a type I extreme value residual. Note that our model of patient utility allows for

the fact that patients with a high severity of illness may prefer bigger hospitals, and allows

for CAH status to directly influence the utility of patients.

Let us now consider non-Medicare patients. Non-Medicare patients will pay a coinsurance,

which amounts to a fixed percentage of the cost of their care, copay. Thus, the price faced

by non-Medicare patient i is copay · pjt. The utility function for non-Medicare patients is

identical to (5) except for the addition of a new arguents, copay and pjt to their expected

utlity hNM(distij , closestij , bedsj, CAHj, teachj , pjt).

Given the type I extreme value error assumption, we can use (??) to write the choice

probability for Medicare patients as

Prijt =
exp(ūMed

ijt )

1 + exp(ūMed
ijt )

with an analogous expression for non-Medicare patients. Similarly, the expected volume for

14A teaching hospital is defined as having at least .25 residents per bed
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the hospital can be expressed as

EV oljt =
I∑

i=1

Prijt. (6)

4.4 Firm optimization and equilibrium

Using the industry structure and preferences that we have described above, we can define the

optimization problem for the firm and use this to characterize the Markov Perfect equilibrium

of the industry. We start by defining the state space as the set of payoff relevant state

variables, consistent with the definition of Markov Perfect equilibrium.

The state for a given hospital consists of its characteristics and the characteristics of the

expected consumers and firms near it. We can group a hospital’s characteristics together as

hospcharjt = (bedsjt, CAHjt, m̂cj, F̂Cj, ownj, locationj) and the characteristics for a patient

together as patchari = (sevi, insi, locationi). We further group together the aggregate in-

dustry state at time t as Ωt = (hospchar1t, . . . hospcharJtt, patchar1, . . . , patcharI). Hospital

j’s state can then be described as the industry state and the hospital’s position within this

state, (Ωt, j).

Using this definition of the state space, we can write the single-agent decision problem for

the firm and use this to exposit the properties that must hold in a Markov Perfect equilibrium.

We start by analyzing the per-period return. At any period, a firm will earn a return that

is a function of its state, action (x, cCAH) and unobservable ǫ. Let this function be denoted

TR((x, cCAH), (Ωt, j), ǫ). We can write this vector as:

TR((x, cCAH), (Ωt, j), ǫ) = EΠ(Ωt, j) + αGov
p − InvCost(x, ǫ) − cCAH (7)

+ 1{ownj = NFP}
(
αNFP

v EV oljt + αNFP
p · 1{bedsjt > 0}

)

+ 1{ownj = Gov}
(
αGov

v EV oljt + αGov
p · 1{bedsjt > 0}

)
.

Note that TR is different than just net profit maximization because NFPs and government

hospitals maximize a weighted sum, not just profits.

Using (7), we can define the net expected total returns to firm j at the start of any period
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t as V (Ωt, j) and express V (Ωt, j) recursively as the following Bellman equation:

V (Ωt, j) =

∫

ǫ

maxx,cCAH

{
TR((x, cCAH), (Ωt, j), ǫ)+ (8)

1{bedsjt + x > 0}βE
[
V (Ωt+1, j) |(Ωt, j), (x, cCAH)

]}
dP (ǫ),

where the law of motion for the jth component of Ωt, is

bedsj,t+1 = bedsjt + x and (9)

CAHj,t+1 = CAHjt + Pr(CAH approval|cCAH).

The Bellman equation (8) reflects the fact that if firm j exits, it receives no further returns. If

firm j does not exit, then its returns depend on the law mof motion for the non-j components.

Firm j takes these as given and never as a function of x or cCAH . Standard arguments show

that the Bellman equation (8) has a unique fixed point provided that β < 1 and profits are

bounded.

Using the definition of the Bellman equation, we can now define a Markov Perfect equi-

librium. The Markov Perfect equilibrium is a set of investment strategies for every state and

shock, x̂(Ωt, j, ǫ) and ĉCAH(Ωt, j, ǫ), for which the following property holds: for each firm j,

x̂ and ĉCAH satisfy the Bellman equation (8) given that the law of motion for other firms is

derived from x̂ and ĉCAH applied to an analogous equation to (9). This condition ensures

that no unilateral deviation is profitable at any state.

5 Inference

5.1 Overview of method

The structural parameters of our model are the α objective function parameters, the δ in-

vestment cost parameters, the discount factor β, the CAH conversion cost parameter γ, the

static marginal cost and fixed cost parameters, and the τ consumer utility parameters. We

deal with these parameters with a variety of methods. We estimate the consumer utility pa-

rameters τ using a standard multinomial logit maximum likelihood model, as the consumer
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does not face a dynamic problem. We observe profits in the data and hence do not need to

estimate the cost function parameters. It is difficult to identify the discount factor and hence

we set it to β = .95.

The remaining parameters, αNFP
p , αNFP

v , αGov
p , αGov

v , γ, δ1, . . . δ7 and σ are not directly

observable in the data but can, in principle, be identified by firm behavior. Since firm behavior

is a function of the dynamic oligopoly model evaluated at the Markov Perfect equilibrium,

identification of these parameters generally requires imposing the structural model.

A method for estimating the structural parameters of dynamic models was developed by

? and applied to the dynamic oligopoly setting by Gowrisankaran and Town (1997). The

idea of these methods is to perform a non-linear search for the structural parameters that

best fit the data. For any vector of structural parameters, one solves for the Markov Perfect

equilibrium of the industry and then evaluates “fit” as the closeness of the actions predicted

by the equilibrium of the model to those reported in the data. The problem with these

methods is that they are extremely computationally intensive as they require solving the

Markov Perfect equilibrium repeatedly, which is very time-consuming.

More recent methods to estimate dynamic models are based on the idea that one can

use the data themselves to predict the future actions of the firm and its competitors, rather

than solving for the Markov Perfect equilibrium for each parameter vector, since the data

reflect Markov Perfect equilibrium play. To implement these methods, one generally predicts

future decisions with a non-structural first stage. The second stage then involves a non-linear

search over structural parameters where the econometrician has only to solve for the optimal

current decision of the agent taking the future actions as given.

We base our estimation algorithm for these remaining parameters on one variant of these

methods, that developed by Bajari et al. (2007). The BBL method has two useful features

for our purposes. First, rather than solving for the overall optimal decisions (as above) they

show that one can estimate the structural parameters by finding the policies that are optimal

within a finite set of alternate policies. This is particularly useful for models with continuous

action spaces as otherwise, solving for optimal decisions is computationally difficult. Second,

they show that the second stage can be evaluated with a very quick computational process,
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which is similar to non-linear least squares, provided that one can express the expectation of

the total return for any state, action and unobservable, TR((x, cCAH), (Ωt, j), ǫ) as a linear

combination of the structural parameters and functions of the data, which we can.

Following BBL, we develop the linear representation for our model, by writing

E
[
TR((x, cCAH), (Ωt, j), ǫ)

]
= Ψ((x, cCAH), (Ωt, j), ǫ) · θ, (10)

where Ψ is a vector-valued function of the data, θ are the structural parameters, and the

(linear) dot product of these two terms generates expected total returns. We use (10) to

exposit the value function similarly as:

V (Ωt, j) = Et

[
∞∑

τ=t

βτ−tΨ((x̂(Ωt, j, ǫ), ĉ
CAH(Ωt, j, ǫ)), (Ωt, j), ǫ)

]
· θ, (11)

where the expectation is over current and future unobservables and future states given un-

observables and equilibrium actions. Define W (Ωt, j) to be the expectation term in (11).

Using these definitions, which are analogous to BBL, we adapt the BBL methods to

our model and data with the following algorithm. First, we approximate the law of motion

for the industry as a function of states and actions, and static gross profits and actions as

a function of states. Second, we forward simulate the industry given equilibrium actions

to approximate W (Ωt, j) for every state observed in the data. Third, we choose a set of

counterfactual investment policies. Let there be P such policies in the set. By the Markov

Perfect equilibrium assumption, each such policy must yield a weakly lower expected value

when chosen by a firm faced by firms playing the Markov Perfect equilibrium strategies.

Thus, for each counterfactual policy, we forward simulate to evaluate an analog to W (Ωt, j)

where the state transitions are determined by the counterfactual policy. Let Ŵ p(Ωt, j) denote

one such vector. Fourth, using (11), the calculated W (Ωt, j) and the set of Ŵ p(Ωt, j), we

estimate the vector of structural parameters as the values for which the true policies are most

closely optimal.

Recall that in our model, the unobservable investment shock ǫ will affect the choice of

investment at any state. The models given in Bajari et al. (2007) and Ryan (2006) do not

allow for private information shocks to investment or other choice variables that affect the
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state. In estimating (10), one must take into account the correlation between the investment

level and ǫ in order to accurately recover the cost of investment. To see this, note that in

our model, the investment policy x̂(Ωt, j, ǫ) is weakly declining in ǫ for any given state, or

alternately put, firms with a low cost of investment invest more at any state. If one instead

assumed that the distributions of investment and cost shocks were uncorrelated, one would

overstate the costs of investment. The difficulty is that we do not directly observe the cost

shock for any investment level, and hence cannot directly compute Ψ((x, cCAH), (Ωt, j), ǫ).

We develop a method that allows us to account for this endogeneity of investment in a

way that preserves the linearity of the estimation specification in (10). Our method rests

on a simple consequence of the monotonicity of investment: a firm that invests in the xth

percentile of the investment distribution must have obtained a draw of ǫ that is in the 1−xth

percentile of the ǫ distribution. Let FΩt,j(x) denote the inverse c.d.f. for investment at state

(Ωt, j). Then, for any observed investment level x, in equilibrium,

ǫj,t = σΦ−1(1 − FΩt,j(x)), (12)

where Φ−1 is the inverse of the standard normal c.d.f. Since the only component of (12) that

is unobservable is σ and σ enters linearly in (12), we can construct terms in Ψ that account

for this correlation, as we do below.

A potential problem to this approach is the fact that investment is only weakly monotonic

in ǫ: because of the fixed costs of investment, there wil be a discrete mass of ǫ for which

investment is 0. However, the lack of strict monotonicity is not problematic, since the only

mass point is at investment of 0, and the value of ǫ does not affect costs when investment is

0.

Another issue is how to estimate the costs of CAH conversion. Note that the CAH conver-

sion strategy is a function, effectively of state variables and investment. Let P CAH(Ωt, j, x)

denote the probability of CAH conversion for any state and investment level. Then, from

(3),

γcCAH = log

(
1 + P CAH(Ωt, j, x)

1 − P CAH(Ωt, j, x)

)
. (13)

Noting that the right side of (13) can be approximated by the data, as in (12), one can again
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construct a term in Ψ that accounts for the cost of conversion, cCAH . One can redefine Ψ to

have it be a function of P CAH rather than cCAH , as P CAH is really what is observed in the

data.

Using these formulations, our vector Ψ has the following components:

Ψ((x, P CAH), (Ωt, j), ǫ) = (Π(Ωt, j),

1{ownj = NFP}EV ol(Ωt, j), 1{ownj = NFP}1{bedsjt > 0},

1{ownj = Gov}EV ol(Ωt, j), 1{ownj = Gov}1{bedsjt > 0},

− 1{x > 0},−1{x > 0}x,−1{x > 0}x2,−1{x < 0},−1{x < 0}x, (14)

− 1{x < 0}x2,−1{x < 0}xΦ−1(1 − FΩt,j(x)),−1{x > 0}xΦ−1(1 − FΩt,j(x)),

− log[(1 + P CAH(Ωt, j, x))/(1 − P CAH(Ωt, j, x))]).

The corresponding vector θ is:

θ = (1, αNFP
v , αNFP

p , αGov
v , αGov

p , δ1, δ2, δ3, δ4, δ5, δ6, δ7σ, σ, 1/γ).

It is easy to verify that the resulting dot product is equal to TR((x, cCAH), (Ωt, j), ǫ).

Using the approximations for W and Ŵ p, we use the same one-sided non-linear least

squares approach as in BBL. Specifically, we choose our parameter estimates to minimize:

P∑

p=1

∑

t,j∈sample

1{Ŵ p(Ωt, j) · θ > W (Ωt, j) · θ}(Ŵ
p(Ωt, j) · θ − W (Ωt, j) · θ)

2.

We obtain standard errors for the coefficients by bootstrapping the above four-step process.

5.2 Details of specifications and approximations

Our estimation algorithm depends on many necessary specifications and approximations

that we list here. Most importantly, the state space of this problem, (Ωt, j), is too large for

computational purposes, as it includes the characteristics of all hospitals and patients in the

market. Thus, we approximate the state space by summarizing it in relatively few dimensions.

The important attributes that define the state for a hospital include its characteristics, some
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weighted sum of the characteristics of its competitors based on how close competitors they

are, the level of competition, and the size of the market surrounding it.

For a given hospital, three of the characteristics noted in hospcharjt enter directly: CAHjt,

bedsjt and ownj. The final characteristics are fixed and marginal costs. We estimate a

hospital-specific productivity level, ĉostj to capture the fixed and marginal costs of a hospital.

We estimate this value for each hospital as the hospital fixed effect from a regression of profits

on characteristics, using data from before the start of our sample, from 1995 to 1997. Because

ĉostj must capture variations in both fixed and marginal costs, we put in polynomial terms

and interactions of it with other state variables in the regression of profits on states.

We also need to summarize the characteristics of patients and other hospitals in the

surrounding market for any hospital. We measure these with three state variables for any

hospital: summary measures of the number of Medicare and non-Medicare patients who are

likely to be treated at any hospital, a measure of competition and the weighted CAH status

of other hospitals. These terms together capture the size of the market and the degree of

competitiveness of the market. We calculate the expected number of patients by estimating

the Medicare utility function (5).15 We then use these to calculate expected volume by

insurance type, EV olMed
jt and EV olNon−Med

j,t (Ωj , t), analogously to EV oljt in (6).

In order to measure the level of competition in the market, we could potentially use a

variety of measures related to the number of other hospitals nearby. A Herfindahl index

is a convenient summary statistic from among these. Rather than arbitrarily defining a

market over which to calculate a Herfindahl index, we follow the literature on the hospital

industry (e.g., Kessler and McClellan, 2000) and define a patient-weighted Herfindahl index.

Specifically, we start by defining

Hit =
∑

j

Pr2
ijt.

We then weight the Herfindahl index for each patient by the probability that they choose a

given hospital. This gives us the measure that we use in our state space, the patient-weighted

15For non-Medicare patients, we also use this function which is equivalent to assuming that the prices faced

by these patients are the same across hospitals.
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Herfindahl index:

HHIjt =

∑
i PrijtHit

EV oljt
,

which provides a summary statistic for the level of competition faced by each hospital.

Similarly, we define the CAH status of a hospitals’ competitors, CAH compjt as the

patient-weighted sum of the CAH status of competitor hospitals. For each patient, the

CAH status of competitor hospitals is defined by the weighted sum of the CAH status for

competitor hospitals to j, weighted by the probability that the patient seeks care at any of

these hospitals. Thus,

CAH compjt =

(∑

i

Prijt

∑
k 6=j PriktCAHkt∑

k 6=j Pikt

)
/EV oljt. (15)

Combining all these variables, the state space that we use in the analysis is

Ω = (beds, CAH, ĉost, own, EV olMed, EV olNon−Med, HHI, CAH comp).

We now discuss how we solve for the first-stage static profit functions and actions and the

low of motion at each state. Ideally, we would solve non-parametrically for these functions.

However, this is not possible because of the large dimensionality of the problem. Since the

state space is continuous, we solve for these functions with regressions. Specifically, group

together the state vector and interactions and polynomials of the states as r(Ω). Then, we

perform a linear regression of profits on r(Ω), where the exact specification is given in the

results section.

In our model, CAH status is an absorbing state. Thus, we require an estimate of the

hazard for P CAH(Ωt, j, x), the probability of successful conversion to CAH between time t

and time t+1 at any state for which CAH = 0. We specify this hazard as a logit, and estimate

it via maximum likelihood for non-CAH hospitals, of CAH approval on interactions of r(Ω)

and investment, which we denote r̂(Ω, x). Note that, given our model, it is appropriate to

include investment as a regressor in this specification, unlike for the profit regression.

The specification for investment, xjt(Ω), is more complicated to design. The majority of

years, hospitals do not change their number of beds, or equivalently, they invest nothing. It

is important to capture this feature of the data, because the fixed costs of investment will

be identified by the extent to which firms choose to invest in lumpy amounts. Yet, a linear
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regression cannot model this type of mass-point. This suggests a latent variable model with

a mass-point at zero. We estimate the following specification:

x∗
jt(Ω) = r(Ω)b + ejt, where:

xjt = x∗
jt if x∗

jt < 0,

xjt = 0 if 0 ≤ x∗
jt < x̄, (16)

xjt = x∗
jt − x̄ if x∗

jt ≥ x̄, and

ejt ∼ N(0, σ2
x).

We estimate the parameters of (16), b, x̄ and σ2
x, using maximum likelihood. Note that our

specification is similar to a Tobit model, but different in that the mass-point is in the middle,

not on one end.

The state vector also contains four other variables that evolve over time as a function

of the strategies of a hospital and its competitors. We estimate the transition for three of

them, EV olMed, EV olNon−Med, and HHI as linear regressions where the difference between

the value at time t + 1 and t is regressed on r̂(Ω, x) for time t. For CAH compjt, investment

does not enter since it is not a function of firm j’s decision. Thus, we specify the transition

for this variable to include only r(Ω).

Using these specifications, we implement the second-stage forward simulation process to

compute W and W p. We perform this process as follows, for each state. We first draw a

value for ǫ and use this value to evaluate the simulated investment level. We then use r(Ω)

or r̂(Ω, x) (as appropriate) to simulate the CAH probability and the other laws of motion. If

the value of any of these variables falls below 0 we set it to 0. Similarly, if the value of HHI

of CAH comp rises above 1 we set it to 1.

This process requires simulating unobservables for each of the equations. To simulate

CAH approval, we estimate the approval probability for each state and then simulate with this

probability. We simulate from the regressions for the linear transitions non-parametrically:

we recover the distribution of the fitted residuals from the transition regressions and draw

from this distribution. We cannot simulate non-parametrically for investment, since we do

not observe the exact residual when investment is 0, which occurs when x∗
jt ∈ [0, x̄). For
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values in this interval, we use the estimated normal density, while we estimate the residuals

non-parametrically for values outside this interval.

5.2.1 Estimation of Utility Parameters

Our approximation of the state space requires construction of several variables are functions of

patient choice probabilities. To generate these probabilities we estimated utility parameters

associated with hospital admission. Specifically, we estimate the parameters of the indirect

utility function characterized in (5) for Medicare and non-Medicare patients. We approximate

the expected utility functions hMed(·) and hNM(·) by higher order and interaction terms of its

arguments. To estimate the utility parameters we use hospital discharge data from 2003 from

California’s Office of Statewide Health Planning and Development (OSHPD). We draw two

random samples of Medicare and non-Medicare, private, non-HMO enrollees and estimate

the parameters of the model seperately for each population. For each patient we match

latitude and longitude information to their reported home ZIP code and calculate straight-

line distances to each hospital in their choice set. In the implimentation we limit the choice

set to all hospitals within 150km circle of the patient’s ZIP code. We also allow for the

possibility of an outside good which is admittence to a hospital outside of the 150km circle.

The parameter estimates from (5) together with locations of patients and hospitals allows

us to calculate Prijt, the probability that a given patient goes to a given hospital seperately for

Medicare and the non-Medicare populations. To calculate the variables in the state space,

EV olMed
jt , EV olNon−Med

jt , HHIjt, and CAH Compjt we use the expected utility estimates

applied to Census tract data. For each person in the relevant patient category we draw a

150km circle about the tract and calcuate Prijt for each person in that tract. Once this

calculation is made it is straight-forward to calculate all of the state space variables for all

hospitals in our sample.
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5.3 Identification

Although we have specified a relatively intricate dynamic model of interaction between hos-

pitals, the forces that will identify the parameters of interest are reasonably straightforward.

The τ consumer utility parameters will be identified from the extent to which consumers

choose hospitals based on characteristics such as location, severity of illness and hospital

size.

The parameters in θ are identified by revealed preferences applied to our dynamic oligopoly

model. Specifically, optimal behavior implies balancing the costs of investment, CAH con-

version costs and fixed costs against the benefits in the form of profits and other returns.

Different values of θ will imply different trade-offs, and the data will reflect particular trade-

offs and hence particular values of θ. Since we use the accounting data on profits in our

estimation, much of the identification derives from the shape of the gross profit function and

the pattern of exit with respect to different states.

In particular, the bed investment cost parameters δ are identified by the impact of chang-

ing beds on the profit function. Heuristically, optimal investment levels will be higher if

gross profits are more steeply sloped in beds, all else being equal. Since investment levels

and the shape of profits with respect to beds are observed in the data, the relation between

investment and the slope of profits in beds will identify the value of the investment cost

parameters. The γ parameter on the cost of CAH conversion is similarly identified by the

extent to which hospitals obtain CAH status at states where it is profitable to have achieved

that status. For instance, if hospitals rarely achieve CAH status even when profitable, this

suggests that a small γ is making the CAH conversion process very costly.

These arguments are heuristic rather than formally true because of the dynamic oligopoly

that is built into our model: an investment in beds will not just change beds, but will

potentially change the expected future value of all the state variables, through the interactions

that occur between firms. For instance, an increase in beds may cause other firms to reduce

their beds in expectation, in which case this positive strategic effect would need to be added

to the direct effect of beds on profits. Moreover, firms must jointly decide on the decisions
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for investment in beds and CAH status. Nonetheless, a simple heuristic benchmark estimate

for our investment parameters can be derived by evaluating the average impact of beds on

profits, where profits are weighted by 1 − β, and estimating the optimal level of investment

given this simple model.

Note that there are seven different δ parameters. The first six of these parameters relate

to the different mean fixed and marginal costs of positive and negative investment. These

parameters can all be separately identified by the relative extents of strictly positive and

negative investments in beds and the extent of non-zero investment. In particular, the fact

that most periods firms rarely invest suggests a large positive fixed cost of investment.

The two other parameters in the bed investment equation (2), δ7 and σ relate to the

distribution of investment for any state. The larger the variance of investment outcomes for

a given state, the larger will be σ. Here, we estimate a distribution with two parameters,

essentially two halves of two normal densities that intersect at 0. The δ7 parameter is then

identified by the relative variance of outcomes for negative investment to positive investment.

The final parameters that we estimate via the dynamic model relate to the objective

functions by ownership type. These parameters can be identified by the pattern of exit in

the market and the relation of exit to profits. For instance, if NFPs often do not exit even

when the expected future profit path is negative, this suggests that they value the provision

of service and/or patient volume. If it further turns out that in unprofitable markets, NFP

hospitals remain in operation only when their expected volume is high, this suggests that

NFPs value expected volume rather than simply the provision of service. Again, expected

profits and expected volume are a function of the dynamic oligopoly behavior between firms.

Yet, one can heuristically benchmark these parameters by examining the exit behavior by

types as a function of current profits.

6 Evidence on the Impact of the CAH Program

In this section we present some evidence of the impact of the CAH program on the rural

hospital infrastructure. From our earlier discussion, the CAH program was signed into law
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in 1997 and went into effect in 1999. In this section we provide some simple descriptions of

the impact of the CAH program on rural hospital performance and market structure. From

our previous discussion, the purpose of the CAH program is to maintain access to inpatient

and emergency care for rural residents. It does this by providing more generous Medicare

reimbursement while requiring participating hospitals to limit their capacity to 25 beds and

restricting their behavior along several other dimensions.

In this section we document the impact of the CAH program along three dimensions.

First, we examine its impact on the distribution of hospital bed size. Second, we analyze the

impact of the program on profitability. Third we explore the impact on hospital closures.

We perform these analyses in two steps. We present simple time series graphs of trends in

the hospital industry broken down by rural and non-rural status.

6.1 Summary Statistics

Summary statistics of the analysis sample are presented in Table 3. Our sample of rural

hospitals is predominantly not-for-profit organizations – 51% of the sample is NFP. Local

government hospitals comprise 39% of the sample and 11% of the sample are for-profit

hospitals. The typical hospital faces little measured competition. The HHI is .42. Over the

sample period the rural hospitals on average reduced their beds by 1.78. The closure rate is

.008.

Table 4 presents the summary statistics seperately for CAH and non-converting hospitals

for 2005. Table 4 compares hospitals that have adopted the CAH status to other hospitals in

rural areas. The table shows that CAHs, are substantially smaller than non-CAH hospitals,

which is to be expected given the regulatory framework they face. The average number of

beds for CAHs is 22.47, very close to the upper bound of 25 beds. In Figures 3 to 4 we

present the histograms of bed size for rural hospitals for 1996 and 2005. From this picture

it is clear that the CAH program had large effects on the size distribution of rural hospitals.

Figures 5 and 6 present the bed size histograms for hospitals that ultimately converted to

CAH status in 1996 and in 2005. Not surprisingly, CAH conversion dramatically altered the
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distribution of the number of beds per hospital. Furthermore, the large mass point at 25

beds suggests that the 25 bed limit is a binding constraint, i.e. CAHs would increase their

bed size if the regulations allowed it.

With respect to ownership of CAHs, there is very little participation of for-profit organiza-

tions (4%), and large participation of government-owned hospitals (46%). In markets where

CAHs are present, the percentage of Medicare-eligible residents averages 16% (shown in Ta-

ble 4) and it is statistically significantly bigger (t=11.22) than the percentage of Medicare

eligibles in areas where non-CAHs are present. This suggests that hospitals are responding

to the incentives of the program, which is available only for Medicare reimbursement. In

Figure 7 we present the time series of accounting profit (net income) margins, Profits
Total Revenue

,

for hospitals with less than 225 beds in 1995 by rural status. The time series pattern for

profit margins is striking. Prior to the passage of the BBA which initiated the CAH program,

profit margins in rural and non-rural hospitals were very similar. With the passage of the

BBA, hospital in non-rural areas saw a dramatic decline in margins as the BBA dramati-

cally cut Medicare payments to non-CAH hospitals.16 However, hospitals in rural areas saw

little decline in their profit margins following the passage of the BBA. This simple graph

is consistent with the findings of MedPAC (2005) and Stensland et al. (2003) where they

found that hospitals that coverted to CAH increased their margins significantly more than

a sample of non-converting hospitals. Figure 8 shows that the exit rates of urban and rural

hospitals move together during the period we study, and the difference in exit rates between

rural and urban hospitals is amplified after the passing of the legislation. We provide further

data analysis in the next section.

16The rise of HMOs, which did not significantly impact rural areas, peaked around 1997 and may also

explain some of the decline in profit margins for non-rural hospitals in the late 1990s.
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7 Estimation Results

7.1 First Stage Estimates

In the first stage we recover the parameters from patients’ demand, hospitals’ profits, and the

policy functions for CAH conversion, investment and exit. The goal is to be able to describe

the behavior of the hospitals at every state, and therefore, in the second stage to be able

to find the dynamic parameters that make this behavior optimal. Consumers’ preferences

for hospitals were estimated by means of a multinomial logit model, where hospitals were

represented as a bundle of attributes including distance from the patient’s census tract,

whether the hospital is the closest to the patient, capacity measured by beds, CAH status,

and teaching status. We estimate the preferences for both Medicare and private patients using

discharge data from the California OSHPD.17 The probabilities generated by this model are

the ones used to compute the expected volumes described in the model section of the paper.

The estimates of the preference parameters are presented in Table 5. It can be seen that

Medicare patients present a larger disutility from hospital distance relative to the younger

population. The preferences for the rest of the attributes are very similar between the two

groups.

The results from the regression of profits on states are presented in Table 6. Due to the

large number of interactions included in the regression, we summarize the important results

in Figure 9. As it is shown in the figure, the benefits from CAH conversion are larger for the

hospitals that actually converted than to the non-converters had they converted at every level

of productivity. In addition, it can be seen that the low performing hospitals are the ones

that benefit the most from conversion. For a hospital with average productivity, conversion

to CAH status implies an increase in profits of about $260,000 per year, and almost twice as

much for a hospital at the bottom 10th percentile.

Table 7 presents the estimates of the CAH conversion policy function, estimated with

a probit model. The probability of converting is larger for NFP and government hospitals

17Future work will incorporate states that we believe are more representative of the rural population such

as Iowa and Washington, and will include pre-policy and post-policy data.
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relative to for-profit hospitals. Larger hospitals, and more productive hospitals are less likely

to convert, as are the hospitals that show positive investment in capacity. Table 8 presents

the results from our tobit-like regression for investment, where the parameters b, x̄ and σx

are estimated. In addition to the policy regressions, we estimate the laws of motion for the

state variables HHI, EV olMed, EV olNon−Med, HHI and CAH compjt, as linear regressions

where the differences between the value at time t + 1 and t are regressed on polynomials of

the state variables. These results are available upon request.

7.2 Dynamic Parameter Estimates

The parameter estimates of the second stage are presented in Table 9. These are the pa-

rameters of the hospitals’ objective function, investment cost, and CAH investment that

make the policy functions estimated in the previous section optimal. Overall the estimates

are sensible. Non-profit and government hospitals value patient volume and operating in

addition to monetary profits. The parameter estimated imply that non-profit hospitals are

indifferent between losing $468,000 in profits and treating 1,000 patients and remaining open.

Government hospitals value volume and remaining operating even more. They are indifferent

between losing $2,393,000 in profits and treating 1,000 patients and remaining open.

The estimates of the parameters of the investment cost function, show that the cost of

positive investment are much larger than the cost of disinvesting in beds, which is consistent

with what we would expect given that additional beds need staff and physical space. The cost

of increasing capacity by 10 beds is about $7.5 million, and the cost of decreasing capacity by

10 beds is about $0.80 million. The last parameter in Table 9, is the CAH approval process

parameter. If a hospital invest $1,000 in acquiring CAH status, it has a probability of 0.12

of being approved. If the hospital effort is $150,000, the probability of approval increases to

0.95.
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8 Policy Experiments

In this section we provide the results from a counterfactual experiment that aims at find-

ing the impact of the CAH program. We do this by simulating the equilibrium under the

counterfactual scenario that CAH conversion is not available. To achieve the goal, we solve

for the Markov Perfect Equilibrium a la Ericson and Pakes using the structural parameters

estimated above. Our first policy experiment includes 183 “monopoly” hospitals, defined as

those that have a HHI ≥ 0.75. We simulate the outcomes of the equilibrium for a baseline

and compare them to the counterfactual where conversion to CAH is not an option. Figure

10 shows the exit probabilities for the hospitals that converted, had they not converted to

CAH over a 20-year period. In a period of 20 years, only 5% of those hospitals would have

exited the market. As expected, the program also affected hospitals’ capacity as shown in

Figure 11. When CAH is not an option, hospitals keep their capacity fairly constant and

above the proscribed level of 25 beds over the 20-year period of our simulation. In contrast,

when CAH is an option the average size of converting hospitals declines to approximately

21 beds. In Figure 12 we plot the effect of the CAH program on hospitals’ value. We find

that the program’s effect on hospital value is the largest for smaller hospitals. For a 25-bed

hospital the program doubles its value.

9 Conclusions

In this paper we seek to understand the impact of the CAH program on the rural hospital

industry market structure. To evaluate the impact of the program we estimate a dynamic

oligopoly game, where hospitals take into account the effect of their decisions on rivals. The

estimation is performed using the recent two-step BBL procedure, which we modify by intro-

ducing private information in the investment cost function. The CAH program has dramati-

cally transformed the rural hospital landscape. Incentives provided in the program radically

reduced the average bed size of rural hospitals. Furthermore, our initial estimates suggest

that the CAH program increased profits for converting hospitals, and disproportionally so
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for poor performing rural hospitals. That is, insofar as the program’s intent was to provide

extra assistance to hospitals that were at risk of failing, it achieved that goal. Our initial

estimates are sensible and have several interesting implications. Non-profit and government

hospitals intrinsically value treating patients and remaining open in addition to profits. Hos-

pitals’ cost of investment is asymmetric for bed investment and disinvestment. Simulations

in monopoly markets show that the program prevented only 5% of closures had the program

not been implemented. Our work contributes to a recent and fast growing literature that uses

the results from the estimation of dynamic games to perform policy evaluations. It should

be noted that these results are very preliminary and subject to evolution. Future work will

include multi-agent simulations and welfare calculations to provide an overall assessment of

the program.
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Figure 1: Conversion rates and Percentage of CAH Hospitals in the U.S.

Figure 2: Spatial distribution of CAH. Dots represent CAH, polygons represent MHAs
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Figure 3: Histogram of bed size, rural hospitals, 1996
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Figure 4: Histogram of bed size, rural hospitals, 2005
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Figure 5: Histogram of CAH converters, 1996
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Figure 6: Histogram of CAH converters, 2005

41



-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Urban Rural

Figure 7: Mean profit margins for hospitals with less than 225 beds in 1995.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year

C
lo

s
u

r
e

 R
a

te
 

All Hospitals Urban Rural

Figure 8: Exit rates for Rural, Urban and All U.S. Hospitals
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Table 1: Relevant Policy Changes for CAH

Legislation Key Aspects of CAH Legislation and Regulation

BBA 1997 • CAH Program established.
• Hospitals should operate no more than 15 acute beds
and no more than 25 total beds, including swing beds.
• All patients’ LOS limited to 4 days.
• Only government and NFP hospitals qualify.
• Hospitals must be distant from nearest neighboring
hospital, at least 35 miles by primary road and 15 by secondary road.
• States can waive the distance requirement by designating
“necessary providers”.

BBRA 1999 • LOS restriction changes to an average of 4 days.
• States can designate any hospital to be “rural”
allowing CAHs to exist in MSAs.
• FP hospitals allowed to participate.

BIPA 2000 • Payments for MDs “on call” are included in cost-based payments.
• Cost-based payments for post-acute patiente in swing beds.

MMA 2003 • Inpatient limit increased from 15 to 25 patients.
• Psychiatric an rehabilitation units are allowed
and do not count against the 25 bed limit.
• Payments are increased to 101 percent of cost.
• Starting in 2006, states can no longer waive the distance requirement.

LOS: Length of Stay

Source: MedPac(2005)
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Table 2: Definitions of Rural-Urban Commuting Area Codes

Code Description

1 Metropolitan area core: primary flow within an Urbanized Area (UA)
2 Metropolitan area high commuting: primary flow 30% or more to UA
3 Metropolitan area low commuting: primary flow 10% to 30% to UA
4 Micropolitan area core: primary flow within an Urban Cluster of 10,000 through 49,999
5 Micropolitan high commuting: primary flow 30% or more to a large UC
6 Micropolitan low commuting: primary flow 10% to 30% to a large UC
7 Small town core: primary flow within UC of 2,500 through 9,999
8 Small town high commuting: primary flow 30% or more to a small UC
9 Small town low commuting: primary flow 10% through 29% to a small UC
10 Rural areas: primary flow to tract outside a UA or UC (including self)

Each code has up to 6 subcodes that classify the zip code depending on their precentage flow

to Urbanized Areas or Urban Clusters
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Table 3: Summary Statistics – Analysis Sample

Mean Std. Dev.

Profits ($1,000) 923.13 2,679.44
CAH Status .22 .42
Not-For-Profit .51 .50
Government .39 .48
For-Profit .11 .31
Beds 52.19 37.60

f̂ 41.04 1,884.36
HHI .42 .19
CAH Comp .00028 .0014
EV olNon−Med 15,176.7 13,700.17
EV olMed 2,817.2 2,256.49
Investment (∆ Beds) -1.78 8.50
Closure .0081 .090
N 16,609
Number of Hospitals 2,236

Table 4: Summary Statistics in 2005 by CAH Status

CAH Non-CAH

Profits ($1,000) 448.67 1,835.1
Not-For-Profit .47 .52
Government .49 .32
For-Profit .036 .16
Beds 22.47 70.17

f̂ -483.31 590.83
HHI .3587 .4485
CAH Comp .00074 .00032
EV olNon−Med 2,247 13,700.17
EV olMed 990.0 4,284.6
Investment (Beds) -2.03 -.36
Closure .0066 .0081
N 916 984
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Table 5: Estimates from MNL Model of Hospital Choice

Variable Medicare S.E. Private S.E.

Distance -.022 .0024 -.043 .0026
Distance2/100 -1.48 .22 -.12 .22
Dist × Urban -.035 .0025 -.031 .0026
Dist2 × Urban 2.96 .22 2.69 .22
Closest 2.61 .067 2.08 .072
Closest × Beds -.0025 .00016 -.0017 .00017
Closest × Urban -.49 .061 -.61 .065
CAH -14.68 4.12 -40.71 4464
CAH × Closest 12.36 3.85 36.37 4464
CAH × Dist 2.61 .067 .18 .066
Beds .011 .00014 .012 .00013
Beds2 -.00076 .0000020 -.00077 .000018
Teaching -1.31 .040 -1.31 .039
Closest × Dist -.032 .00019 -.032 .0019
Teach × Dist .0092 .00089 .0098 .00082
Beds × Dist -.000018 1.86 × 10−6 -.000021 1.81 × 10−6

N 29,536 26,365
Likelihood -86,427 -72,765
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Table 6: First-Stage Regresion: Profits ($1,000)

Variable Estimate Robust s.e. t

CAH status 471.42 164.60 2.86
Beds 19.14 7.58 2.52

f̂ .51 .076 6.61

f̂ 2 .000036 .000015 2.61

f̂ 3 −3.15x10−9 1.67x10−9 -1.89
HHI -2278.60 869.22 -2.62
HHI2 1928.04 9.03 2.13

f̂ ∗ CAH .095 .19 .54
Vol. Under 65 045 0.0011 3.92
Vol. Over 65 -.081 0.072 -1.12
CAH comp -23,035.20 10,000.12 -2.30
CAH comp*CAH 27,279.48 17,688.6 1.54
R2 0.29
N 16,609
Standard errors clustered at the hospital level
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Table 7: First-Stage Regresion: CAH Conversion

Variable Estimate Robust s.e. z

NFP .90 .23 3.84
Gov .78 .23 3.32
Beds .015 .014 1.12
Beds2 -.0022 .0002 -10.78

f̂ -.17 .33 -.53

f̂ 2 -.054 .025 -2.19

f̂ 3 .002 .002 0.98
HHI .45 1.61 .28

f̂ ∗ HHI 1.42 1.27 1.11

f̂ ∗ Beds -.0093 .0041 -2.27
Vol. Under 65 0.000049 0.000016 3.43
Vol. Over 65 -.00028 0.000097 -2.85
CAH Comp 27.0 16.94 1.59
x -.25 0.0083 -30.48
Constant -1.34 .54 -2.47
Log Likelihood -1,895.5
N 11,155
Standard errors clustered at the hospital level
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Table 8: First-Stage Regression: Investment

Variable Estimate Robust s.e. z
NFP .90 .23 3.84
Gov .78 .23 3.32
CAH status -.072 .015 -4.59
CAH status*Beds 1.88 .46 4.07
Beds -.0039 .0054 -.71
Beds2 -.000026 .000027 -.96

f̂ -.045 .18 -.25

f̂ 2 .0041 .58 .71

f̂ 3 -.00027 .00047 -0.58
HHI -.46 1.27 -.37

f̂ ∗ HHI .16 .73 .22

f̂ ∗ Beds .00047 .00097 .48
Vol. Under 65 0.000016 0.000013 1.27
Vol. Over 65 -.000023 0.000084 -.28
CAH Comp 8.63 46.86 .18
Constant -1.34 .54 -2.47
x̄ 6.06 .15 85.08
σx 19.10 .22 40.48
Log Likelihood -16,327.6
N 14,028
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Table 9: Parameter Estimates Dynamic Oligopoly Equilibrium

Variable Estimate Robust s.e.

αNFP
v .41

αNFP
p 58.00

αGov
v 2.20

αGov
p 193.09

1{x > 0} 1.46x103

1{x > 0}x 605.40
1{x > 0}x2 .089
1{x < 0} -102.3
1{x < 0}x -80.88
1{x < 0}x2 1.07
1{x < 0}xǫ 10.02
σ 5.17
γ−1 41.57
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